Энергия гельмгольца. Термодинамические потенциалы

Голландский физико-химик Вант-Гофф предложил новую теорлю химического сродства, которая, не объясняя природы химического сродства, ограничивается указанием способа его измерения, т. е. дает количественную оценку химическому сродству.

Вант-Гофф использует в качестве меры химического сродства максимальную работу Ауах или для реакций, протекающих при или соответственно.

Максимальная работа равна энергии, которую нужно приложить к системе, чтобы остановить реакцию, т. е. преодолеть, силы химического сродства. Поскольку реакция протекает в направлении совершения положительной максимальной работы, знак или определяет направление самопроизвольного течения химического взаимодействия.

Максимальная работа при постоянном объеме равна

Разность называют энергией Гельмгольца системы и обозначают буквой Таким образом,

Максимальная работа при постоянном давлении равна

Разность называют энергией Гиббса системы и обозначают буквой Таким образом,

Энергия Гиббса химической реакции.

Энергия Гиббса термодинамическая функция состояния системы Изменение энергии Гиббса в системе при протекании химической реакции называют энергией Гиббса химической реакции. Согласно уравнениям (IV.20) и (IV.21),

Исходя из (IV.21), энергия Гиббса химической реакции характеризует направление и предел самопроизвольного протекания реакции в условиях постоянства температуры и давления.

Энергия Гельмгольца химической реакции.

Энергия Гельмгольца также является термодинамической функцией состояния системы Изменение энергии Гельмгольца в системе при протекании реакции называют энергией Гельмгольца химической реакции. Согласно (IV. 18) и (IV.19),

где и - изменение соответствующих термодинамических функций в ходе реакции, протекающей при и температуре Т.

Величина [см. уравнение (IV. 19)] характеризует направление и предел самопроизвольного течения реакций в изохорно-изотермических условиях.

На рис. IV.3 приведены соотношения между основными термодинамическими функциями состояния системы.

Энергия Гиббса образования химических соединений.

Энергия Гиббса химической реакции являясь изменением термодинамической функции состояния системы может быть вычислена по разности

(индексы «2» и «1» относятся к конечному и начальному состояниям системы соответственно). При расчете энергии Гиббса химической реакции по уравнению (IV.24) следует иметь в виду, что - сумма энергий Гиббса образования всех продуктов реакции, - сумма энергий Гиббса образования всех исходных веществ. Стандартную энергию Гиббса химической реакции вычисляют по разности сумм стандартных энергий Гиббса образования продуктов реакции и исходных веществ.

Стандартной энергией Гиббса образования химического соединения называют энергию Гиббса реакции образования одного моля этого соединения, находящегося в стандартном состоянии, из соответствующих

Рис. IV.3. Соотношение важнейших термодинамических функций

простых веществ, также находящихся в стандартных состояниях и термодинамически устойчивых при данной температуре фазах и модификациях (табл. IV.3).

Стандартные энергии Гиббса образования простых веществ принимают равными нулю, если их агрегатные состояния и модификации устойчивы при стандартных условиях и 298,16 К.

Направление и пределы самопроизвольного течения химических реакций.

В соответствии с (IV. 19) и (IV.21) положительной максимальной работе А или отвечают отрицательные значения энергии Гельмгольца и энергии Гиббса химических реакций. Иными словами, при постоянных температуре и давлении реакция протекает самопроизвольно в том направлении, которому отвечает убыль энергии Гиббса системы Поэтому условием самопроизвольного течения химической реакции при заданных и Т является неравенство

Пределом самопроизвольного течения реакции при т. е. условием равновесия, служит достижение минимального для данных и Т значения функции

При постоянных температуре и объеме реакция протекает самопроизвольно в том направлений, которому отвечает убыль энергии Гельмгольца системы Поэтому условием самопроизвольного

Таблица IV.3, Стандартные энергии Гиббса образования некоторых простых веществ и соединений при 298,16 К

произвольного течения химической реакции при заданных V и Т является неравенство

Пределом самопроизвольного течения реакции при т. е. условием равновесия, служит достижение минимального для данных V и Т значения функции

Если при изменению химического состава системы отвечает возрастаение энергии Гиббса то это значит, что самопроизвольная реакция не идет. Неравенство

означает, что реакция может идти самопроизвольно только в обратном направлении, которому отвечает убыль энергии Гиббса системы. Рассчитать стандартную энергию Гиббса химической реакции при 298,16 К и тем самым выяснить знак изменения функции несложно.

Так, например, используя данные, приведенные в табл. IV.3, можно рассчитать стандартную энергию Гиббса реакции при 298,16 К (для 1 моль

Полученное значение энергии Гиббса реакции удовлетворяет неравенству (IV.25). Это значит, что при 101 кПа и 298 К процесс взаимодействия оксида натрия с водой может протекать самопроизвольно в направлении получения (к).

Однако стандартная энергия Гиббса химической реакции не может быть критерием направления или предела самопроизвольного протекания химического взаимодействия в условиях, отличных от стандартных. Нельзя также подменять величину величиной Все это несколько затрудняет использование энергии Гиббса для оценки процессов, протекающих в реальных условиях.

Из уравнения (IV.22) следует, что при энергия Гиббса химической реакции тем меньше, чем меньше и чем больше Наибольшее химическое сродство веществ друг к другу проявляется в реакциях, протекающих с выделением теплоты и сопровождающихся ростом энтропии системы Из уравнения (IV.22) следует также, что самопроизвольно не могут осуществляться эндотермические процессы протекающие с уменьшением энтропии так как при этом величина всегда положительна. Эндотермические взаимодействия могут самопроизвольно идти только при условии Таким взаимодействиям способствует повышение температуры, так как при этом увеличивается значение энтропийного фактора процесса

Итак, любая реакция при постоянных температуре и давлении протекает самопроизвольно в направлении убыли энергии Гиббса.

Рис. IV.4. Изменение энергии Гиббса в системе

Пределом этой убыли является минимальное значение отвечающее состоянию равновесия системы. Состояние равновесия наиболее устойчиво, и всякое отклонение от него требует затраты энергии (не может быть самопроизвольным). На рис. IV.4 представлена зависимость энергии Гиббса системы от состава реакционной смеси. Точке А отвечает состав 100% вещества А, а точке вещества В. Процесс идет самопроизвольно до тех пор, пока величина энергии Гиббса системы падает от до Процесс идет самопроизвольно до тех пор, пока величина падает от до Точка С на оси абсцисс, отвечающая минимальному значению энергии Гиббса определяет равновесный состав смеси при заданных условиях . Состояние равновесия характеризуется равенством

В уравнении (IV.28) нельзя подменять величину энергии Гиббса реакции протекающей при некоторых и Т легко вычисляемой по справочным данным, величиной стандартной энергии Гиббса реакции Равенство не является условием равновесия процесса, протекающего в реальных условиях.

Константа равновесия.

Точка С на рис. IV.4, отвечающая условию (IV.28), определяет равновесный состав реакционной смеси в системе при некоторых постоянных значениях давления и температуры. Концентрации газообразных или растворенных веществ А и В в равновесной реакционной смеси называются равновесными концентрациями, а их соотношение выражается константой равновесия:

Если реагенты А и В газообразны, то можно говорить об их равновесных парциальных давлениях и об их соотношении

Если химическое взаимодействие между газами протекает так, что число молей газообразных веществ до и после реакции одинаково (например, то константа равновесия (IV.29) равна константе равновесия Связь между и устанавливается с помощью уравнения если реагенты ведут себя как идеальные газы.

Константа равновесия реакции дает представление о выходе

продуктов реакции при заданной температуре. Так, например, если константа равновесия процесса при температуре Т равна единице: то равновесный состав реакционной смеси характеризуется равенством концентраций и С в, т. е. процесс при температуре Т идет самопроизвольно до тех пор, пока концентрация в смеси вещества В не станет равной концентрации А.

·Стандартная энергия Гиббса реакции равна сумме стандартных энергий Гиббса продуктов реакций за вычетом суммы стандартных энергий Гиббса исходных веществ с учетом стехиометрических коэффициентов уравнения реакции.

где - стандартная энергия Гиббса реакции,

- сумма стандартных энергий Гиббса продуктов реакции,

- сумма стандартных энергий Гиббса исходных веществ,

n, n / - стехиометрические коэффициенты исходных веществ и конечных продуктов в уравнении реакции.

Стандартные значения энергии Гиббса для 1 моля вещества при Т = 298 К приведены в справочнике /5, табл.44; 6, табл.1/.

Решение :

1) Расчет энергии Гиббса.

Находим в справочнике /5, табл.44/ значения стандартных энергий Гиббса для веществ реакции:

а) продукты реакции

,

,

б) исходные вещества

,

.

Применяя уравнение (63), получим:

Вывод . Полученное значение энергии Гиббса () указывает на то, что данная реакция в закрытой системе может протекать в стандартных условиях в прямом направлении.

2) Расчет энергии Гельмгольца.

Для расчета изохорно-изотермического потенциала рассмотрим соотношение между энергией Гиббса и энергией Гельмгольца:

, , но .

т.е.

Если в реакции принимают участие только конденсированные фазы (твердые и жидкие вещества), то изменение объема DV равно нулю.

Если в реакции участвуют газообразные продукты, то изменением объема пренебрегать нельзя.

Рассмотрим простейший случай, когда газы, участвующие в реакции, подчиняются законам идеального газа. Тогда согласно уравнению Клапейрона-Менделеева можно записать PDV=DnRT .

Dn=n кон - n исх,

где n кон - число молей газообразных конечных продуктов;

n исх – число молей газообразных исходных веществ.

В нашем примере газообразный продукт один – углекислый газ, поэтому Dn = 0 - 1= - 1.

Вывод . Т.к. полученное в результате расчета значение DF <0, то в изохорно-изотермическом процессе в закрытой системе будет протекать самопроизвольный процесс.

· Для нахождения энергии Гиббса можно применять уравнение (56), которое дает возможность производить расчет как в стандартных условиях, так и при любой другой температуре.

Пример 2 . Вычислить энергию Гиббса и Гельмгольца при Т 1 = 298 К и Т 2 = 473 К, при постоянном давлении 1,013×10 5 Па для реакции:

Как скажется повышение температуры на направления протекания данной реакции?

Решение . Для расчета DG реакции воспользуемся уравнением (56):

,

где DH и DS - соответственно изменение энтальпии и энтропии реакции при заданной температуре:

а) Т =298 К.

Определяем изменение стандартной энтальпии реакции D r H 0 (298) (расчет приведен в примере 1 раздела 1.3.3): D r H 0 (298) = -170,42 кДж.

D r S 0 (298) (расчет приведен в примере 1 раздела 1.5.4): D r S 0 (298) = -133,77 Дж.

Вывод . Расчет стандартной энергии Гиббса по справочным данным, приведенный в предыдущем примере, и расчет по уравнению (56), приведенный в данном примере, практически совпадают. Относительная ошибка составляет:

Расчет DF (298) см. в этом же разделе, пример 1.

б) Т = 473 К.

Определяем изменение энтальпии реакции D r H (473) (расчет приведен в примере 2 раздела 1.4.2):

D r H (473) = -125,79 кДж.

Определяем изменение энтропии реакции D r S (473) (расчет приведен в примере 1 раздела 1.5.4):

D r S (473) = -12,9 Дж.

Подставим полученные данные в уравнение (56):

Расчет DF проводим согласно уравнению (64):

Вывод . Ответ на последний вопрос задачи определяется знаком D r S и D r H (см. табл. 1). В нашем случае , т.е. в уравнении член (- TDS) для нашей реакции положителен. Следовательно, с повышением температуры Т в изобарно-изотермическом процессе значение D r G будет возрастать (т.е. становиться менее отрицательным). Это означает, что повышение температуры будет препятствовать протеканию рассматриваемой реакции в прямом направлении.

В изохорно-изотермическом процессе будут наблюдаться аналогичные тенденции для энергии Гельмгольца.

.

Преобразуем данное уравнение и проинтегрируем:

.

Если Т 1 = 298 К, то уравнение примет вид:

или (65)

В зависимости от степени точности возможны три варианта расчета энергии Гиббса по этому способу.

Первый вариант . Предположим, что энтропия реакции не зависит от температуры, т.е. D r S 0 (298) = D r S (Т 2), тогда:

Полученный результат расчета дает существенную погрешность.

Пример 3 . Вычислить энергию Гиббса предложенным способом для реакции:

При Т 2 = 473 К, при постоянном давлении 1,013×10 5 Па.



Решение.

Стандартную энергию Гиббса находим по уравнению (63) (см. пример 1 в разделе 1.5.8.): D r G 0 (298) = -130,48 кДж.

Определяем изменение стандартной энтропии реакции D r S 0 (298) (расчет приведен в примере 1 раздела 1.5.4): D r S 0 (298) = -133,77 Дж.

Подставим полученные данные в уравнение (66) и произведем расчет: .

Вывод . Результат расчета отличается от результата в примере 2,б раздела 1.5.8, т.к. последний вариант является приближенным, не учитывается фазовый переход воды.

Второй вариант. Предположим, что энтропия реакции зависит от температуры

или .

Если теплоемкость не зависит от температуры D r С Р = const , то после интегрирования имеем:

Подставим полученное значение D r S (Т )в (65):

После интегрирования получим:

учитывая зависимость энтропии реакции от температуры.

Решение.

Определяем D r С Р реакции по первому следствию закона Гесса:

Воспользуемся значениями стандартных изобарных теплоемкостей для индивидуальных веществ, приведенных в справочнике /5, табл. 44/:

а) продукты реакции:

,

;

б) исходные вещества:

,

.

Расчет стандартной энергии Гиббса для данной реакции приведен в примере 1 раздела 1.5.8. D r G 0 (298) = -130,48 кДж.

Расчет стандартной энтропии для данной реакции приведен в примере 1 раздела 1.5.4. D r S 0 (298) = -133,77 Дж.

Подставляя полученные значения в (67), получим:

Вывод: данный расчет также является приближенным, т.е. он не учитывает зависимость теплоемкости от температуры, но более точным, чем первый способ, рассмотренный выше.

Пример, рассматриваемый нами, является более сложным, т.к. в предложенном интервале температур у одного из веществ, а именно у воды, существует фазовый переход, что необходимо учитывать. Это усложняет расчет и делает его громоздким.

В таких случаях вычислить энергию Гиббса можно, воспользовавшись формулой (56). Расчет этот приведен в примере 2 раздела 1.5.8.

На практике часто для расчета энергии Гиббса используют метод Темкина - Шварцмана (1946 г.), позволяющий стандартную энергию Гиббса при 298 К пересчитать для любой температуры /1, 4, 7, 8/.

Пример 5. Вычислить изменение энергии Гиббса при изотермическом сжатии 0,005 м 3 кислорода от Р 1 =0,1013×10 5 Па до Р 2 =1,013×10 5 Па (Т = 0 0 С ), считая кислород идеальным газом.

Решение. Из уравнение Менделеева-Клапейрона находим число молей кислорода, участвующих в реакции:

Для определения DG воспользуемся формулой (58):

.

Т.к. процесс протекает при Т= const, то второе слагаемое будет равно нулю. Расчет проводим по формуле dG = VdP.

Из уравнения Менделеева-Клапейрона выразим V:

Подставляем:

.

Интегрируем и подставляем данные задачи:

Вывод. При изотермическом сжатии кислорода процесс не может протекать самопроизвольно.

Пример 6. Теплота плавления льда при 0 0 С равна 335 Дж/г. Удельная теплоемкость воды равна . Удельная теплоемкость льда равна . Найти DG, DH, DS для процесса превращения 1 моль переохлажденной воды при – 5 0 С в лед.

Напомним, что второй закон термодинамики определяет критерии самопроиз­вольного протекания процессов в изолированных системах. Однако, подобные условия (отсутствие обмена энергией и веществом с окружающей средой) реализуются сравнительно редко. Поэтому представляется важным сформулировать подобного рода критерии для закрытых систем, где возможен обмен энергией с окружающей средой. Для этого нам потребуется определить две новые функции состояния – энергию Гельмгольца и энергию Гиббса.

Работа процесса в общем случае, как это уже говорилось, зависит от пути процесса. Работа неравновесного процесса меньше, чем работа равновесного процесса, протекающего между теми же начальным и конечным состояниями системы. В самом деле, исходя из уравнения первого закона термодинамики (I, 7а) и уравнения (II, 17а), получаем в общем случае:

δW = dQ – dU £ TdS – dU (III, 1)

Величина правой части этого уравнения не зависит от того, равновесен или неравновесен процесс. В случае равновесного процесса:

dW = dW равн. = TdS – dU (III, 2)

Для неравновесного процесса:

dW < TdS – dU (III, 3)

Сравнивая уравнения (III, 2) и (III, 3), получаем:

dW равн. > dW

Таким образом, работа равновесного процесса максимальна.

Максимальная работа не зависит от пути, а определяется лишь начальным и конечным состояниями системы. Так, при S = const (равновесный адиабатный процесс)

dW = –dU и W макс. = – (U 2 – U 1) (III, 4)

т. е. величина максимальной работы определяется изменением внутренней энергии системы.

Интегрируя при постоянной Т уравнение (III, 2), получаем:

W макс. = T (S 2 – S 1) – (U 2 – U 1) (III, 5)

W макс. = (U 2 – TS 2) +(U 1 – TS 1 ) (III, 6)

Выражения, стоящие в скобках, являются функциями состояния системы. Введя в уравнение (III, 6) обозначение

F º U – TS (III, 7)

получаем (при T = const)

W макс. = – F 2 + F 1 = – (F 2 – F 1) = –DF (III, 8)

где F – функция состояния, называемая энергией Гельмгольца (в настоящее время для обозначения энергии Гельмгольца также используется символ А ). Таким образом, максимальная работа при изохорно-изотермических равновесных процессах равна убыли энергии Гельмгольца системы.

Переписав уравнение (III, 3) в виде

U = F + TS

можно рассматривать внутреннюю энергию, как состоящую из двух частей – свободной энергии F и связанной энергии TS. Лишь часть внутренней энергии – свободная энергия, которую система отдает вовне при T = const , может превратиться в работу (условием для такого превращения является равновесность процесса; в неравновесном процессе свободная энергия частично или полностью переходит в теплоту). Другая часть внутренней энергии – связанная энергия – при изменении системы, если Т = const , не дает работы, а переходит только в теплоту.


Энтропия есть, таким образом, фактор ёмкости связанной энергии.

Для процессов, протекающих с изменением температуры (T const ), деление внутренней энергии на свободную и связанную не может быть проведено и, следовательно, сами термины не имеют общего значения. Поэтому будем пользоваться для функции F названием энергия Гельмгольца.

Полный дифференциал функции F можно получить, дифференцируя уравнение (III, 7):

dF º dU TdS SdT (III, 9)

Сопоставив это уравнение с уравнениями (III, 2) и (III, 3), получим в общем виде:

dF £ -SdT – dW (III, 10)

Откуда при Т = const

(dF) T £ –dW (III, 11)

F 2 – F l = DF < W; –(F 2 – F 1 ) > W (III, 12)

Выражение (III, 12) отражает уже известное нам положение, что работа неравновесного процесса меньше работы равновесного процесса.

Если при равновесном процессе совершается только работа расширения (dW = PdV), то из уравнения (III, 10) получаем:

dF = -SdT – PdV (III, 13)

Это выражение является полным дифференциалом функции F при переменных V и Т.

Полагая T = const и V = const , а также при условии отсутствия всех видов работы (dW = 0) , получаем из уравнения (III, 10):

(F ) V, T £ 0 (III, 13а)

т. е., энергия Гельмгольца системы, находящейся при постоянных V и Т не изменяется при равновесных процессах, при неравновесных процессах ее значение убывает.

Так как система, в которой протекают (и могут протекать) только равновесные процессы, бесконечно близка к равновесию, то сформулированные свойства энергии Гельмгольца позволяют судить о том, находится ли данная система в равновесии или нет. В последнем случае направление неравновесного процесса определяется убылью энергии Гельмгольца при постоянных температуре и объеме системы.

Условия, которым должны удовлетворять процессы, для того чтобы по изменениям величины F можно было судить о направлении этих процессов, иные, чем для энтропии. Для энтропии это были условия постоянства внутренней энергии и объема (изолированная система), для энергии Гельмгольца это условие постоянства объёма и температуры – легко измеримых параметров системы. Энергия Гельмгольца, являясь производным понятием по отношению к энтропии, представляет собой практически более удобный критерий направления процессов, чем энтропия.

Изложенные соображения могут быть выражены следующим положением: энергия Гельмгольца системы, находящейся при постоянных объёме и температуре, уменьшается при неравновесных (самопроизвольных) процессах. Когда она достигает минимального значения, совместимого с данными V и Т, система приходит в равновесное состояние.

Термодинамические потенциалы. Энергия Гиббса. Энергия Гельмгольца

В изолированных системах энтропия только увеличивается и при равновесии достигает максимума. По этой причине она должна быть использована в качестве критерия возможности протекания самопроизвольных процессов в таких системах. При этом на практике большинство процессов происходит в неизолированых системах, вследствие чего для них нужно выбрать свои критерии направления самопроизвольных процессов и достижения равновесия. Такие критерии выражаются иными термодинамическими функциями, отличными от энтропии. Οʜᴎ называются характеристическими функциями.

Рассмотрим объединœенный первый и второй закон термодинамики в дифференциальной форме:

TdS ³ dU + dA" + pdV, (36).

Выразим отсюда элементарную полезную работу dA":

dA" £ -dU + TdS - pdV, (37)

Рассмотрим два случая:

1) Пусть система переходит обратимо из состояния 1 в состояние 2 при V = const, Т = const, ᴛ.ᴇ. рассмотрим обратимый изохорно-изотермический процесс. Получим (т.к. dV = 0):

dА"= -dU +TdS – pdV = - dU+d(TdS) = -d(U –TS). (38)

Под знаком дифференциала стоит некоторая функция состояния. Обозначим ее через F:

U – TS º F (39)

и назовем энергией Гельмгольца (старое название: изохорно-изотермический потенциал). Тогда получим:

dА" = – dF V,T . (40)

В случае если проинтегрировать (40), то получим:

А" = – DF V,T (41)

величина DF = F 2 – F 1 – изменение энергии Гельмгольца, а

–DF = F 1 – F 2 – убыль энергии Гельмгольца.

Энергия Гельмгольца является одним из так называемых термодинамических потенциалов .

Термодинамический потенциал - ϶ᴛᴏ такая функция состояния системы, убыль которой при обратимом переходе из состояния 1 в состояние 2 при двух постоянных параметрах (x и y) равна максимальной полезной работе обратимого процесса А"= -∆П х,у

2) Рассмотрим обратимый изобарно-изотермический процесс (р = cosnt, Т = cosnt) и проанализируем соотношение (38):

dА" = – dU +TdS – pdV = – dU +d(TS) – d(рV) = – d (U – TS + pV) = – d(H – TS).

Под знаком дифференциала стоит другая функция состояния. Обозначим ее через G:

Н – TS º G(42)

и назовем энергией Гиббса (старое название: изобарно-изотермический потенциал). Тогда получим:

dА" = – dG р, Т (43)

Проинтегрировав (43) получаем:

А" = – DG р, Т (44)

Здесь DG = G 2 – G 1 – изменение энергии Гиббса, – DG=G 1 – G 2 – убыль энергии Гиббса.

В ходе обратимого перехода системы из состояния 1 в состояние 2 при постоянных давлении и температуре совершаемая системой полезная работа равна убыли энергии Гиббса (– DG).

Стоит сказать, что для необратимых процессов, т.к. А" необр <А" обр, можно записать

А" необр < -∆F V , T и А" необр < -∆G p , T

Используя соотношение (38), можно показать, что при определœенных условиях термодинамическими потенциалами, кроме G, F, являются также внутренняя энергия U (изохорно-изоэнтропийный потенциал) и энтальпия Н (изобарно-изоэнтропийный потенциал),

Изменения термодинамических потенциалов можно рассматривать как критерии возможности протекания самопроизвольных процессов и равновесия в термодинамических системах.

В ходе самопроизвольного процесса, протекающего в соответствующих условиях, система сама совершает работу (А">0) тогда при V,T=const, для необратимого самопроизвольного процесса

-∆F>0; ∆F<0; F 2 -F 1 <0; F 2

а при p,V=const DG>0, DG<0, G 1 -G 2 <0, G 2 -G 1

при равновесии DF V ,T = 0, DG р,Т = 0.

Термодинамические потенциалы в ходе самопроизвольного процесса уменьшаются и достигают минимума при равновесии.

В случае если нарисовать как и для энтропии графики изменения термодинамического потенциала П исходя из пути процесса, то экстремальной точкой, соответствующей равновесию, будет минимум (в отличие от энтропии):


АВ – необратимый самопроизвольный процесс (здесь DП х,у < 0);

ВA – необратимый несамопроизвольный процесс (здесь DП х,у > 0);

точка В – соответствует равновесному состоянию (здесь DП х,у = 0).

2.5 Характеристические функции. Уравнения Гиббса–Гельмгольца.

Характеристическими функциями называются такие функции состояния системы, посредством которых и их частных производных бывают выражены в явной форме всœе термодинамические свойства системы.

Из дифференциальной формы объединœенного первого и второго законов термодинамики для обратимых процессов выразим величину dU:

TdS = dU + dA" + pdV, откуда

dU = TdS – dA" – pdV. (45)

В случае если полезная работа отсутствует (ᴛ.ᴇ. dA" = 0), то получим:

dU = TdS – pdV (46)

Вспомним теперь следующие соотношения:

G º H – TS = U + pV – TS (47)

F º U – TS (48)

В случае если найти значения полных дифференциалов dG, dF из соотношений (43)-(44) и учесть соотношение (46) для dU, то можно получить следующие выражения для dG, dF:

dG = dU + pdV + Vdp - TdS -SdT =Vdp – SdT (49)

dF = dU - TdS - SdT = – pdV – SdT (50)

На основании соотношений (49)–(50) можно прийти к выводам, что

Энергия Гельмгольца (изохорно-изотермический потенциал) является характеристической функцией, если независимыми переменными выбраны объем и температура . Полный дифференциал энергии Гельмгольца для простых систем записывается в виде:

а в случае обратимых процессов как

Полагая V = const

, . (4.58)

Функция А = f (T ) при V = const является убывающей, а кривая зависимости энергии Гельмгольца от температуры при постоянном объеме обращена выпуклостью вверх (рис. 4.3). Мерой убыли энергии Гельмгольца при повышении температуры вещества является энтропия .

Полагая Т = const , из уравнения (4.57) получаем

, . (4.59)

Функция А = f (V ) при T = const также является убывающей, но кривая зависимости энергии Гельмгольца от объема при постоянной температуре обращена выпуклостью вниз (рис. 4.3).

Рис.4.3. Зависимость энергии Гельмгольца от температуры и объема.

При протекании обратимых процессов в сложных системах, способных выполнять кроме работы расширения и другие виды работы (полезную работу), справедливо:

Если процесс изотермический (Т = const ), то

,

Итак, в обратимом изотермическом процессе убыль энергии Гельмгольца равна максимальной (полной) работе, производимой системой . В этом заключается основной смысл введения новой функции А : через изменение функции состояния в изотермических условиях можно определить максимальную работу в обратимом процессе.

Если обратимый процесс протекает в изохорно-изотермических условиях , то

В обратимом изохорно-изотермическом процессе убыль энергии Гельмгольца равна максимальной полезной работе .

Рассмотрим систему и окружающую среду, которые находятся в тепловом равновесии: Т сист. = Т ср. . Пусть в системе протекает процесс, в результате которого в окружающую среду переходит количество теплоты δQ cр. . Тогда общее изменение энтропии dS общ (ее называют изменением энтропии вселенной ) равно:

Поскольку теплота уходит из системы, то δQ cр. = –δQ сист. , поэтому

Но dS общ. положительно для любого самопроизвольного (необратимого) процесса и равно нулю при равновесии. Следовательно,

. (4.63)

Значение неравенства (4.63) состоит в том, что оно выражает критерий самопроизвольного изменения только через свойства системы . Если система теряет теплоту при постоянном объеме, то

δQ V = dU ,

поэтому соотношение (4.63) принимает вид:

или . (4.64)

В последнем соотношении нижний индекс опущен, поскольку все величины относятся к системе. Следует понимать, что dS – это изменение энтропии системы, а ‑dU /T – изменение энтропии среды: суммарная энтропия стремится к максимуму.



Поскольку в конечном итоге рассматривается изохорно-изотерми-ческий процесс, то

Следовательно, при протекании процессов в изохорно-изотермических условиях должно выполняться неравенство

где знак равенства относится к обратимым процессам, а знак неравенства – к необратимым.

Если в обратимом процессе энтропия системы увеличивается, то максимальная работа больше, чем –ΔU , так как T ΔS положительно. Система не изолирована и поэтому в нее может поступать теплота, служащая источником энергии для производства работы. Если же ΔS отрицательно, то теплота должна выделяться из системы, чтобы привести к общему увеличению энтропии (энтропии вселенной). Поэтому не все изменение внутренней энергии может перейти в работу и W max < (–ΔU ).

Понравилась статья? Поделитесь ей
Наверх