Виды механической энергии формулы. Какие виды механической энергии существуют

Кинетическая энергия – скалярная физическая величина, характеризующая движущееся тело и равная для материальной точки половине произведения ее массы на квадрат ее скорости:

Единицей кинетической энергии в СИ является джоуль (Дж).

При скоростях, близких к скорости света, следует пользоваться иным определением кинетической энергии.

Кинетическая энергия протяженного тела равна сумме кинетических энергий его малых частей, которые можно считать материальными точками.

Используя второй закон Ньютона, можно доказать теорему об изменении кинетической энергии тела: в инерциальной системе отсчета изменение кинетической энергии тела равно работе всех сил, как внутренних, так и внешних, действующих на это тело.

Если на прямолинейном участке траектории на тело, совершающее перемещение x , действуют две постоянные силыи, направленные под углами 1 и  2 к перемещению, то изменение кинетической энергии тела равно:

12. Механическая работа и мощность. Кпд.

Механическая работа A постоянной силына перемещение– это скалярная физическая величина, равная произведению модуля силыF , модуля перемещенияs и косинуса угла между направлениями силы и перемещения.

А = Fs cos =F x s ,

где F x – проекция силы на направление перемещения (рис. 4).

Работа постоянной силы в зависимости от угла между векторами силы и перемещенияможет быть положительной, отрицательной и равной нулю (рис. 5).

Единицей работы в СИ является джоуль (Дж).

В общем случае действия переменной силы на криволинейном участке траектории расчет работы оказывается более сложным.

Мощность – скалярная физическая величина, равная отношению работы силыA к промежутку времениt , в течение которого она была произведена:

Мощность силы может измеряться во времени N (t )

Единицей мощности в СИ является ватт (Вт).

При воздействии силы на тело, движущееся со скоростью(рис. 7), мощность этой силы равна:

N = F cos .

Часто термины работа и мощность относят к устройству, благодаря которому возникают силы, совершающие работу. Говорят о работе человека, мощности электродвигателя или двигателя автомобиля вместо работы и мощности силы натяжения веревки, с которой человек тянет сани, или работы и мощности внутренних сил или мощности сил сопротивления воздуха при движении автомобиля. В простейших случаях (подъемный кран поднимает груз) это вполне допустимо, однако в ряде случаев требует более аккуратного рассмотрения. Так, в случае движения автомобиля силой тяги является сила трения шин об асфальт, а ее работа равна нулю. В случае вертолета, зависшего над землей, сила тяги равна силе тяжести, мощность силы тяги равна нулю, однако энергия сгорающего топлива затрачивается на сообщение кинетической энергии потокам воздуха, отбрасываемого вниз.

При использовании простейших механизмов человек стремится совершить действия, которые не под силу выполнить «голыми руками» (поднять груз, сдвинуть тело и т.д.). Такие механизмы характеризуются физической величиной, называемой коэффициентом полезного действия (КПД). В механике обычно под КПД механизма понимают отношение полезной работы к затраченной.

Когда говорят о затраченной работе, то имеют в виду работу силы , которой человек воздействует на механизм. Если речь идет о полезной работе, то имеют в виду работу силы, приложенной к телу при его равномерном перемещении. Так, если человек поднимает груз с помощью системы блоков, перемещая конец веревки на длинуs 1 , а груз при этом перемещается (поднимается) на высоту s 2 под действием силы F 2 = mg , то КПД механизма, обозначаемый буквой , будет равен.

Цель этой статьи - раскрыть сущность понятия «механическая энергия». Физика широко использует это понятие как практически, так и теоретически.

Работа и энергия

Механическую работу можно определить, если известны сила, действующая на тело, и перемещение тела. Существует и другой способ для расчета механической работы. Рассмотрим пример:

На рисунке изображено тело, которое может находиться в различных механических состояниях (I и II). Процесс перехода тела из состояния I в состояние II характеризуется механической работой, то есть при переходе из состояния I в состояние II тело может осуществить работу. При осуществлении работы меняется механическое состояние тела, а механическое состояние можно охарактеризовать одной физической величиной - энергией.

Энергия - это скалярная физическая величина всех форм движения материи и вариантов их взаимодействия.

Чему равна механическая энергия

Механической энергией называют скалярную физическую величину, которая определяет способность тела выполнять работу.

А = ∆Е

Поскольку энергия - это характеристика состояния системы в определенный момент времени, то работа - это характеристика процесса изменения состояния системы.

Энергия и работа обладают одинаковыми единицами измерения: [А] = [Е] = 1 Дж.

Виды механической энергии

Механическая свободная энергия делится на два вида: кинетическую и потенциальную.

Кинетическая энергия - это механическая энергия тела, которая определяется скоростью его движения.

Е k = 1/2mv 2

Кинетическая энергия присуща подвижным телам. Останавливаясь, они выполняют механическую работу.

В различных системах отсчета скорости одного и того же тела в произвольный момент времени могут быть разными. Поэтому кинетическая энергия - относительная величина, она обуславливается выбором системы отсчета.

Если на тело во время движения действует сила (или одновременно несколько сил), кинетическая энергия тела меняется: тело ускоряется или останавливается. При этом работа силы или работа равнодействующей всех сил, которые приложены к телу, будет равняться разнице кинетических энергий:

A = E k1 - E k 2 = ∆Е k

Этому утверждению и формуле дали название - теорема о кинетической энергии .

Потенциальной энергией именуют энергию, обусловленную взаимодействием между телами.

При падении тела массой m с высоты h сила притяжения выполняет работу. Поскольку работа и изменение энергии связаны уравнением, можно записать формулу для потенциальной энергии тела в поле силы тяжести :

E p = mgh

В отличие от кинетической энергии E k потенциальная E p может иметь отрицательное значение, когда h<0 (например, тело, лежащее на дне колодца).

Еще одним видом механической потенциальной энергии является энергия деформации. Сжатая на расстояние x пружина с жесткостью k имеет потенциальную энергию (энергию деформации):

E p = 1/2 kx 2

Энергия деформации нашла широкое применение на практике (игрушки), в технике - автоматы, реле и другие.

E = E p + E k

Полной механической энергией тела именуют сумму энергий: кинетической и потенциальной.

Закон сохранения механической энергии

Одни из самых точных опытов, которые провели в середине XIX века английский физик Джоуль и немецкий физик Майер, показали, что количество энергии в замкнутых системах остается неизменной. Она лишь переходит от одних тел к другим. Эти исследования помогли открыть закон сохранения энергии :

Полная механическая энергия изолированной системы тел остается постоянной при любых взаимодействиях тел между собой.

В отличие от импульса, который не имеет эквивалентной формы, энергия имеет много форм: механическую, тепловую, энергию молекулярного движения, электрическую энергию с силами взаимодействия зарядов и другие. Одна форма энергии может переходить в другую, например, в тепловую кинетическая энергия переходит в процессе торможения автомобиля. Если сил трения нет, и тепло не образуется, то полная механическая энергия не утрачивается, а остается постоянной в процессе движения или взаимодействия тел:

E = E p + E k = const

Когда действует сила трения между телами, тогда происходит уменьшение механической энергии, однако и в этом случае она не теряется бесследно, а переходит в тепловую (внутреннюю). Если над замкнутой системой выполняет работу внешняя сила, то происходит увеличение механической энергии на величину выполненной этой силой работы. Если же замкнутая система выполняет работу над внешними телами, тогда происходит сокращение механической энергии системы на величину выполненной ею работы.
Каждый вид энергии может превращаться полностью в произвольный иной вид энергии.

Слово "энергия" происходит из греческого языка и имеет значение «действие", "деятельность». Само понятие было впервые введено английским физиком в начале XIX века. Под «энергией» понимается способность обладающего этим свойством тела совершать работу. Тело способно совершать тем большую работу, чем большей энергией оно обладает. Существует несколько ее видов: внутренняя, электрическая, ядерная и механическая энергии. Последняя чаще других встречается в нашей повседневной жизни. Человек с давних времен научился приспосабливать ее под свои потребности, преобразуя в механическую работу при помощи разнообразных приспособлений и конструкций. Мы можем также преобразовывать одни виды энергии в другие.

В рамках механики(один из механическая энергия - это физическая величина, которая характеризует способность системы (тела) к совершению механической работы. Следовательно, показателем присутствия данного вида энергии является наличие некоторой скорости движения тела, обладая которой, оно может совершать работу.

Виды механической В каждом случае кинетическая энергия - величина скалярная, складывающаяся из суммы кинетических энергий всех материальных точек, составляющих конкретную систему. Тогда как потенциальная энергия одиночного тела (системы тел) зависит от взаимного положения его (их) частей в рамках внешнего силового поля. Показателем изменения потенциальной энергии служит совершенная работа.

Тело обладает кинетической энергией, если оно находится в движении (ее иначе можно назвать энергией движения), а потенциальной - если оно поднято над поверхностью земли на какую-то высоту (это энергия взаимодействия). Измеряется механическая энергия (как и прочие виды) в Джоулях (Дж).

Для нахождения энергии, которой обладает тело, нужно найти работу, затрачиваемую на перевод этого тела в нынешнее состояние из состояния нулевого (когда энергия тела приравнивается к нулю). Далее приведены формулы, согласно которым может быть определена механическая энергия и ее виды:

Кинетическая - Ek=mV 2 /2;

Потенциальная - Ep = mgh.

В формулах: m - масса тела, V - скорость его g - ускорение падения, h - высота, на которую тело поднято над поверхностью земли.

Нахождение для системы тел заключается в выявлении суммы ее потенциальной и кинетической составляющих.

Примерами того как механическая энергия может применяться человеком служат и изобретенные в древнейшие времена орудия (нож, копье и т.д.), и самые современные часы, самолеты, прочие механизмы. Как источники данного вида энергии и выполняемой ею работы могут выступать силы природы (ветер, морские течение рек) и физические усилия человека или животных.

Сегодня очень часто систем (например, энергия вращающегося вала) подлежит последующему преобразованию при производстве электрической энергии, для чего используют генераторы тока. Разработано множество устройств (двигателей), способных выполнять непрерывное превращение в механическую энергию потенциала рабочего тела.

Существует физический закон сохранения ее, согласно которому в замкнутой системе тел, где нет действия сил трения и сопротивления, постоянной величиной будет сумма обоих видов ее (Ek и Ep) всех составляющих ее тел. Такая система идеальна, но в реальности подобных условий нельзя достичь.

Кинетическая энергия - скалярная физическая величина, характеризующая движущееся тело и равная для материальной точки половине произведения ее массы на квадрат ее скорости:

Единицей кинетической энергии в СИ является джоуль (Дж).

При скоростях, близких к скорости света, следует пользоваться иным определением кинетической энергии.

Кинетическая энергия протяженного тела равна сумме кинетических энергий его малых частей, которые можно считать материальными точками.

Используя второй закон Ньютона, можно доказать теорему об изменении кинетической энергии тела: в инерциальной системе отсчета изменение кинетической энергии тела равно работе всех сил, как внутренних, так и внешних, действующих на это тело.

Если на прямолинейном участке траектории на тело, совершающее перемещение x, действуют две постоянные силы и, направленные под углами 1 и 2 к перемещению, то изменение кинетической энергии тела равно:

Механическая работа и мощность. КПД

Механическая работа A постоянной силы на перемещение - это скалярная физическая величина, равная произведению модуля силы F, модуля перемещения s и косинуса угла между направлениями силы и перемещения.

А = Fs cos =Fxs,

где Fx - проекция силы на направление перемещения (рис. 4).

Работа постоянной силы в зависимости от угла между векторами силы и перемещения может быть положительной, отрицательной и равной нулю (рис. 5).


Единицей работы в СИ является джоуль (Дж).

В общем случае действия переменной силы на криволинейном участке траектории расчет работы оказывается более сложным.

Мощность - скалярная физическая величина, равная отношению работы силы A к промежутку времени t, в течение которого она была произведена:

Мощность силы может измеряться во времени N(t)

Единицей мощности в СИ является ватт (Вт).

При воздействии силы на тело, движущееся со скоростью (рис. 7), мощность этой силы равна:

Часто термины работа и мощность относят к устройству, благодаря которому возникают силы, совершающие работу. Говорят о работе человека, мощности электродвигателя или двигателя автомобиля вместо работы и мощности силы натяжения веревки, с которой человек тянет сани, или работы и мощности внутренних сил или мощности сил сопротивления воздуха при движении автомобиля. В простейших случаях (подъемный кран поднимает груз) это вполне допустимо, однако в ряде случаев требует более аккуратного рассмотрения. Так, в случае движения автомобиля силой тяги является сила трения шин об асфальт, а ее работа равна нулю. В случае вертолета, зависшего над землей, сила тяги равна силе тяжести, мощность силы тяги равна нулю, однако энергия сгорающего топлива затрачивается на сообщение кинетической энергии потокам воздуха, отбрасываемого вниз.

При использовании простейших механизмов человек стремится совершить действия, которые не под силу выполнить «голыми руками» (поднять груз, сдвинуть тело и т.д.). Такие механизмы характеризуются физической величиной, называемой коэффициентом полезного действия (КПД). В механике обычно под КПД механизма понимают отношение полезной работы к затраченной.

В механике различают два вида энергии: кинœетическую и потенциальную. Кинœетической энергией называют механическую энергию всякого свободно движущегося тела и измеряют ее той работой, которую могло бы совершить тело при его торможении до полной остановки.

Пусть тело В , движущееся со скоростью , начинает взаимодействовать с другим телом С и при этом тормозится. Следовательно, тело В действует на тело С с некоторой силой и на элементарном участке пути ds совершает работу

По третьему закону Ньютона на тело В одновременно действует сила , касательная составляющая которой вызывает изменение численного значения скорости тела. Согласно второму закону Ньютона

Следовательно,

Работа͵ совершаемая телом до полной его остановки равна:

Итак, кинœетическая энергия поступательно движущегося тела равна половинœе произведения массы этого тела на квадрат его скорости:

Из формулы (3.7) видно, что кинœетическая энергия тела не должна быть отрицательной ().

В случае если система состоит из n поступательно движущихся тел, то для ее остановки крайне важно затормозить каждое из этих тел. По этой причине полная кинœетическая энергия механической системы равна сумме кинœетических энергий всœех входящих в нее тел:

Из формулы (3.8) видно, что Е k зависит только от величины масс и скоростей движения, входящих в нее тел. При этом неважно, каким образом тело массой m i приобрело скорость . Другими словами, кинœетическая энергия системы есть функция состояния ее движения .

Скорости существенно зависят от выбора системы отсчета. При выводе формул (3.7) и (3.8) предполагалось, что движение рассматривается в инœерциальной системе отсчета͵ т.к. иначе нельзя было бы использовать законы Ньютона. При этом, в разных инœерциальных системах отсчета͵ движущихся относительно друг друга, скорость i -го тела системы, а, следовательно, его и кинœетическая энергия всœей системы будут неодинаковы. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, кинœетическая энергия системы зависит от выбора системы отсчета͵ ᴛ.ᴇ. является величиной относительной .

Потенциальная энергия - ϶ᴛᴏ механическая энергия системы тел, определяемая их взаимным расположением и характером сил взаимодействия между ними.

Численно потенциальная энергия системы в данном ее положении равна работе, которую произведут действующие на систему силы при перемещении системы из этого положения в то, где потенциальная энергия условно принимается равной нулю (Е п = 0). Понятие ʼʼпотенциальная энергияʼʼ имеет место только для консервативных систем, ᴛ.ᴇ. систем, у которых работа действующих сил зависит только от начального и конечного положения системы. Так, для груза весом P , поднятого на высоту h , потенциальная энергия будет равна (Е п = 0 при h = 0); для груза, прикрепленного к пружинœе, , где - удлинœение (сжатие) пружины, k – ее коэффициент жесткости (Е п = 0 при l = 0); для двух частиц с массами m 1 и m 2 , притягивающимися по закону всœемирного тяготения, , где γ – гравитационная постоянная, r – расстояние между частицами (Е п = 0 при ).

Рассмотрим потенциальную энергию системы Земля – тело массой m , поднятого на высоту h над поверхностью Земли. Уменьшение потенциальной энергии такой системы измеряется работой сил тяготения, совершаемой при свободном падении тела на Землю. В случае если тело падает по вертикали, то

где Е no – потенциальная энергия системы при h = 0 (знак ʼʼ-ʼʼ показывает, что работа совершается за счёт убыли потенциальной энергии).

В случае если это же тело падает по наклонной плоскости длиной l и с углом наклона к вертикали (, то работа сил тяготения равна прежней величинœе:

В случае если, наконец, тело движется по произвольной криволинœейной траектории, то можно представить себе эту кривую состоящей из n малых прямолинœейных участков . Работа силы тяготения на каждом из таких участков равна

На всœем криволинœейном пути работа сил тяготения, очевидно, равна:

Итак, работа сил тяготения зависит только от разности высот начальной и конечной точек пути.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, тело в потенциальном (консервативном) поле сил обладает потенциальной энергией. При бесконечно малом изменении конфигурации системы работа консервативных сил равна приращению потенциальной энергии, взятому со знаком минус, так как работа совершается за счёт убыли потенциальной энергии:

В свою очередь работа dA выражается как скалярное произведение силы на перемещение , в связи с этим последнее выражение можно записать следующим образом: W системы равна сумме ее кинœетической и потенциальной энергий:

Из определœения потенциальной энергии системы и рассмотренных примеров видно, что эта энергия, подобно кинœетической энергии, является функцией состояния системы: она зависит только от конфигурации системы и ее положения по отношению к внешним телам. Следовательно, полная механическая энергия системы также является функцией состояния системы, ᴛ.ᴇ. зависит только от положения и скоростей всœех тел системы.

Понравилась статья? Поделитесь ей
Наверх