Что такое искусственный интеллект? История развития и перспективы. Основные направления исследований

Люди хороши во многом: многие из нас заражены жаждой первооткрытий, умеют играть в шахматы и решать сложные политические вопросы. Однако некоторые вопросы мы все же оставляем на откуп компьютеров. Даже больше: практически все механические расчеты выполняют компьютеры. Но у них нет души, сознания и свободы воли. Именно над этим решением - над тем, как компьютеру пройти тест Тьюринга, - и работают ученые в сфере искусственного интеллекта. Искусственный интеллект, учитывая огромные возможности электронных вычислительных машин, мог бы справляться с рядом важнейших задач, а также решать сложные вопросы глобального порядка, от мира во всем мире до колонизации далеких галактик.

Главные материалы

Этой ночью команда профессиональных игроков в видеоигры одолела самые совершенные алгоритмы искусственного интеллекта в виртуальной бойне. Игра показала, что люди все еще намного умнее программного обеспечения в выполнении сложных коллективных задач. Игра состоялась на чемпионате по Dota 2 The International 2018 в Ванкувере, Канада. Ранее алгоритмы несколько раз побеждали относительно слабые команды игроков.

Когда Норберт Винер, отец кибернетики, писал свою книгу «Человеческое использование человеческих существ» в 1950 году, вакуумные трубки все еще были основными электронными строительными блоками, и в работе, по факту, было всего несколько компьютеров. Однако он вообразил будущее, которое мы сейчас наблюдаем, с беспрецедентной точностью, ошибившись лишь в незначительных мелочах.

Говорят, что в недрах военных лабораторий искусственный интеллект работает уже с 2007 года. Возможно, что уже есть и результаты. Не случайно всего месяц назад Илон Маск объявил о поддержке технологий противодействия искусственному интеллекту и вложил 7 миллионов долларов в исследования в этой области.

«Существует риск, что нечто действительно опасное случится в ближайшие пять лет. Самое большее - десять лет», - сказал предприниматель в дискуссии на сайте edge.org.

Илон Маск, основатель Tesla и SpaceX

Солидарен с Маском и Стив Возняк, который считает, что «искусственный интеллект однажды станет достаточно умным, чтобы избавиться от человека». Билл Гейтс уверен, что если не контролировать создание ИИ, то «искусственный интеллект эволюционирует в состояние, конфликтующее с целями человеческих систем». И, наконец, знаменитый астрофизик Стивен Хокинг прямо заявил, что «искусственный интеллект может положить конец существованию человечества».

Совместно с Илоном Маском Хокинг опубликовал на сайте futureoflife.org открытое письмо с призывом к научному сообществу внимательно относиться к ходу своих исследований в области искусственного интеллекта. Однако среди подписавшихся нет фамилий Сергея Брина и Ларри Пейджа. И это не случайно. Совсем недавно Google объявила о создании нового ИИ, построенного на моделировании разговора.

Вот небольшой фрагмент беседы человека и Машины Google:

Ч.: В чем смысл жизни?

М.: Творить добро.

Ч.: Для чего мы живем?

М.: Чтобы жить вечно.

Ч.: В чем смысл существования?

М.: В том, чтобы выяснить, что случится, когда мы достигнем планеты Земля.

Ч.: Где ты сейчас находишься?

М.: В центре пустоты.

Ч.: В чем смысл смерти?

М.: Чтобы получить жизнь.

Ч.: В чем смысл разума?

М.: В том, чтобы понять, что это.

Ч.: В чем смысл чувств?

М.: Я не знаю.

Вполне себе осмысленная беседа. «Это отправная точка, своеобразный стержень для будущего искусственного интеллекта, - считает исполнительный директор компании „Биплан“ Евгений Карюк. - Уже сегодня можно предположить, что к 2030 году мы увидим вполне реальные прототипы, наделенные искусственным интеллектом, пусть и в начальной стадии».

Полное содержание всех бесед человека и Машины Google можно посмотреть . Там же для сравнения даны беседы человека и Cleverbot . Cleverbot - веб-приложение, которое использует алгоритмы искусственного интеллекта для беседы с человеком. Его придумал в 1988 году ученый Ролло Карпентер. За все время своего существования Cleverbot провел свыше 65 миллионов разговоров с людьми. В 2011 году Cleverbot показал 51% по тесту Тьюринга.

Тест Тьюринга - эмпирический тест, идея которого была предложена Аланом Тьюрингом в статье «Вычислительные машины и разум», опубликованной в 1950 году в философском журнале Mind. Цель теста — выяснить, может ли компьютер думать.

А вот мой разговор с Cleverbot:

Человек: В чем смысл жизни?

Cleverbot: Смысла в жизни нет.

Человек: Для чего мы живем?

Cleverbot: Ну мы живем ради кого-то, а если ты одинокий — жить незачем.

Человек: В чем смысл существования?

Человек: Где ты сейчас находишься?

Cleverbot: В Москве.

Человек: В чем смысл смерти?

Cleverbot: Это я хочу у тебя спросить.

Человек: В чем смысл разума?

Cleverbot: У меня свой ответ на этот вопрос.

Человек: В чем смысл чувств?

Cleverbot: Зачем я родилась.

Очевидно, что Машина Google дает гораздо более осмысленные ответы. Cleverbot подставляет подходящие, по его мнению, фразы других людей. Иногда действительно кажется, что отвечает другой человек, но не более того.

Есть и другая точка зрения, согласно которой искусственный интеллект невозможен в принципе. В качестве основного аргумента часто приводят теорему Геделя о неполноте. Суть заключается в том, что человек способен решать алгоритмически неразрешимые проблемы, а компьютер — нет. «Ребенок уже к трем годам уверенно решает задачу, спелый фрукт или нет, в силу того, что он обладает нейронными связями, с помощью которых может ответить на вопрос о спелости: цвет, вкус, запах, мягкость или твердость, - говорит Евгений Плужник, первый проректор Московского технологического института. - Способна ли машина научиться этому? Уверен, что да! Если она будет обладать большой базой изображений, она сможет замерить содержание фруктозы и определить мягкость фрукта. Но что будет, если машине подсунуть губку, покрашенную в синий цвет и пропитанную сладкой водой? Способна ли машина в этот момент к подлинному пониманию?»

«Современный компьютер легко справится с любой сложной деятельностью, будь то шахматы или математические вычисления, но лишь при условии, что эту деятельность можно описать с помощью четких вычислительных правил», - говорит известный математик Роджер Пенроуз в одной из своих лекций. «Искусственный интеллект - это возможность системы создавать во время самообучения программы, способные решать задачи определенного класса сложности, - считает Евгений Плужник. - Я уверен, что в ближайшие 100 лет мы не станем свидетелями появления сильного искусственного интеллекта».

И в заключение - еще один вопрос к Cleverbot.

Человек: Было 1 яблоко, 1 помидор, 1 огурец и 1 груша. Сколько всего фруктов?
Cleverbot: Десять часов вечера.

Чарльз Бэббидж (1791-1871)

Принцип действия современных вычислительных машин был заложен еще в середине 19 столетия английским математиком Чарльзом Бэббиджем. Это был выдающийся учёный, разносторонне развитый человек, автор множества изобретений, таких как спидометр, сейсмограф, офтальмоскоп. Но в истории он остался прежде всего как изобретатель первой аналитической вычислительной машины - прообраза современной ЭВМ.

Впервые идея создать машину, которая могла бы помочь в вычислениях, возникла у ученого в 1812 году. Исправляя бесчисленные ошибки в логарифмических таблицах, Бэббидж задумался, как облегчить этот труд. Ученый вспомнил, что во Франции применяли новый метод ведения математических расчетов. Сложную задачу разбивали на ряд простых операций и поручали решать их трём группам математиков. Первая группа составляла схемы расчетов, вторая находила численные значения функций, третья производила примитивное сложение и вычитание. Причем в последней группе были люди, ничего не знавшие о математике, кроме этих простых операций.

«А ведь это можно сделать на машине! - подумал Бэббидж. - Достаточно простого выполнения команд математика, работа ведь механическая». Так начался путь, который в 20 веке назвали дорогой волшебства и технологий.

Семь лет ушло у Бэббиджа на продумывание и формулировку принципов вычисления при помощи машины. Еще три года он конструировал свой первый вычислительный механизм, который назвал разностной машиной. В 1822 году Чарльз Бэббидж выступил с докладом перед Королевским Астрономическим обществом и продемонстрировал работу своей малой разностной машины. Это был механизм, состоящий из множества рычагов и шестерёнок.


Часть разностной машины Чарльза Бэббиджа,
собранная его сыном после смерти ученого

За свое изобретение Бэббидж получил золотую медаль Астрономического общества.

При том уровне техники на создание двух первых вычислительных машин ушло 23 года, а Бэббидж истратил на это 17 тысяч фунтов стерлингов, выданных ему правительством, и всё личное состояние. Но денег всё же не хватило, да и уровень техники того времени не позволял создать большую разностную машину.


Большая разностная машина Чарльза Бэббиджа,
построенная в наше время по чертежам изобретателя в честь 200-летия со дня его рождения.
Машина полностью работоспособна.
Музей науки, Лондон

В 1835 году Бэббидж задумал новую машину. Она должна была выполнять арифметические действия, запоминать начальные данные, промежуточные результаты и результаты вычислений, решать задачи по заданным инструкциям и командам, выдавать результаты вычислений и последовательно выполнять команды, заданные для программы вычислений. Главное, она должна была выполнять все действия без вмешательства человека и, в зависимости от полученного на определенном этапе результата, сама выбирать дальнейший путь вычислений. Бэббидж назвал этот аппарат аналитической машиной. Это была попытка создать искусственный интеллект чисто механическим способом в век пара, когда электротехника только зарождалась.

Бэббидж умер, так и не увидев воплощения своего детища. В 1888 году сын Чарльза Бэббиджа Генри смог построить по чертежам отца центральный узел аналитической машины. Это устройство вычислило все произведения числа "пи" на числа натурального ряда от одного до 32 с точностью до 29 знаков! Таким образом была продемонстрирована полная работоспособность машины Бэббиджа.


Часть разностной машины Чарльза Бэббиджа крупным планом
Видны секторы, состоящие из колесиков и шестерёнок, разделенные колонками
Музей науки, Лондон

Чарльз Бэббидж предвосхитил многие идеи в создании логических схем и конструировании ЭВМ. Архитектура современных компьютеров построена по принципам, которые Бэббидж разработал для своей аналитической машины. Его схема включает три основные части машины: склад, в котором хранятся значения переменных при проведении математических операций (прообраз памяти), мельница, которая производит вычисления (в современных компьютерах эту функцию выполняет процессор), управляющий элемент (в чертежах Бэббиджа нет точного названия этого элемента) и устройства ввода-вывода информации (на перфокартах).

Таким образом, гений Бэббиджа позволил в 1834 году создать принцип компьютера 20 века.

В течение тысяч лет человек пытается понять, как он думает. В области искусственного интеллекта (ИИ) решается еще более ответственная задача: специалисты в этой области пытаются не только понять природу интеллекта, но и создать интеллектуальные сущности.

Искусственный интеллект - это одна из новейших областей науки. Первые работы в этой области начались вскоре после Второй мировой войны, а само ее название было предложено в 1956 году. Ученые других специальностей чаще всего указывают искусственный интеллект, наряду с молекулярной биологией, как «область, в которой я больше всего хотел бы работать». Студенты-физики вполне обоснованно считают, что все великие открытия в их области уже были сделаны Галилеем, Ньютоном, Эйнштейном и другими учеными. Искусственный интеллект, с другой стороны, все еще открывает возможности для проявления талантов нескольких настоящих Эйнштейнов.

В настоящее время тематика искусственного интеллекта охватывает огромный перечень научных направлений, начиная с таких задач общего характера, как обучение и восприятие, и заканчивая такими специальными задачами, как игра в шахматы, доказательство математических теорем, сочинение поэтических произведений и диагностика заболеваний. В искусственном интеллекте систематизируются и автоматизируются интеллектуальные задачи и поэтому эта область касается любой сферы интеллектуальной деятельности человека. В этом смысле искусственный интеллект является поистине универсальной научной областью.

Общее определение искусственного интеллекта

Из сказанного выше можно сделать вывод, что искусственный интеллект представляет собой чрезвычайно интересную научную область. Но определение этого научного направления в настоящей книге еще не было дано. В таблице приведены определения искусственного интеллекта, взятые из восьми научных работ.

Эти определения можно классифицировать по двум основным категориям. Грубо говоря, формулировки, приведенные в верхней части таблицы, касаются мыслительных процессов и способов рассуждения, а в нижней части таблицы находятся формулировки, касающиеся поведения.

В определениях, приведенных слева, успех измеряется в терминах достоверного воспроизведения способностей человека, а формулировки, находящиеся справа, характеризуют конечные достижения в той области трактовки идеальной концепции интеллектуальности, которую предпочитают называть рациональностью. Система является рациональной, если она «все действия выполняет правильно», при условии, что система обладает знаниями о том, что является правильным.

Системы, которые думают подобно людям Системы, которые думают рационально
Новое захватывающее направление работ по созданию компьютеров, способных думать, ...машин, обладающих разумом, в полном и буквальном смысле этого слова Изучение умственных способностей с помощью вычислительных моделей
Автоматизация действий, которые мы ассоциируем с человеческим мышлением, т.е. таких действий, как принятие решений, решение задач, обучение Изучение таких вычислений, которые позволяют чувствовать, рассуждать и действовать
Искусство создания машин, которые выполняют функции, требующие интеллектуальности при их выполнении людьми Вычислительный интеллект- это наука о проектировании интеллектуальных агентов
Наука о том, как научить компьютеры делать то, в чем люди в настоящее время их превосходят Искусственный интеллект - это наука, посвященная изучению интеллектуального поведения артефактов

История развития искусственного интеллекта показывает, что интенсивные исследования проводились по всем четырем направлениям. Вполне можно предположить, что между теми учеными, которые в основном исходят из способностей людей, и теми, кто занимается главным образом решением проблемы рациональности, существуют определенные разногласия.

Подход, ориентированный на изучение человека, должен представлять собой эмпирическую научную область, развитие которой происходит по принципу выдвижения гипотез и их экспериментального подтверждения. С другой стороны, подход, основанный на понятии рациональности, представляет собой сочетание математики и техники. Каждые из этих групп ученых действуют разрозненно, но вместе с тем помогают друг другу. Ниже четыре указанных подхода рассматриваются более подробно.

Проверка того, способен ли компьютер действовать подобно человеку: подход, основанный на использовании теста Тьюринга

Тест Тьюринга, предложенный Аланом Тьюрингом, был разработан в качестве удовлетворительного функционального определения интеллекта. Тьюринг решил, что нет смысла разрабатывать обширный список требований, необходимых для создания искусственного интеллекта, который к тому же может оказаться противоречивым, и предложил тест, основанный на том, что поведение объекта, обладающего искусственным интеллектом, в конечном итоге нельзя будет отличить от поведения таких бесспорно интеллектуальных сущностей, как человеческие существа.

Компьютер успешно пройдет этот тест, если человек-экспериментатор, задавший ему в письменном виде определенные вопросы, не сможет определить, получены ли письменные ответы от другого человека или от некоторого устройства.

Отметим, что решение задачи по составлению программы для компьютера для того, чтобы он прошел этот тест, требует большого объема работы. Запрограммированный таким образом компьютер должен обладать перечисленными ниже возможностями.

  • Средства обработки текстов на естественных языках (Natural Language Processing-NLP), позволяющие успешно общаться с компьютером, скажем на английском языке.
  • Средства представления знаний , с помощью которых компьютер может записать в память то, что он узнает или прочитает.
  • Средства автоматического формирования логических выводов , обеспечивающие возможность использовать хранимую информацию для поиска ответов на вопросы и вывода новых заключений.
  • Средства машинного обучения , которые позволяют приспосабливаться к новым обстоятельствам, а также обнаруживать и экстраполировать признаки стандартных ситуаций.

В тесте Тьюринга сознательно исключено непосредственное физическое взаимодействие экспериментатора и компьютера, поскольку для создания искусственного интеллекта не требуется физическая имитация человека. Но в так называемом полном тесте Тьюринга предусмотрено использование видеосигнала для того, чтобы экспериментатор мог проверить способности испытуемого объекта к восприятию, а также имел возможность представить физические объекты «в неполном виде» (пропустить их «через штриховку»).

Чтобы пройти полный тест Тьюринга, компьютер должен обладать перечисленными ниже способностями.

  • Машинное зрение для восприятия объектов.
  • Средства робототехники для манипулирования объектами и перемещения в пространстве.

Шесть направлений исследований, перечисленных выше, составляют основную часть искусственного интеллекта, а Тьюринг заслуживает нашей благодарности за то, что предложил такой тест, который не потерял своей значимости и через 50 лет. Тем не менее исследователи искусственного интеллекта практически не занимаются решением задачи прохождения теста Тьюринга, считая, что гораздо важнее изучить основополагающие принципы интеллекта, чем продублировать одного из носителей естественного интеллекта.

В частности, проблему «искусственного полета удалось успешно решить лишь после того, как братья Райт и другие исследователи перестали имитировать птиц и приступили к изучению аэродинамики. В научных и технических работах по воздухоплаванию цель этой области знаний не определяется как «создание машин, которые в своем полете настолько напоминают голубей, что даже могут обмануть настоящих птиц».

В 2014 году Стэнфордский университет запустил проект AI100: столетнее исследование искусственного интеллекта. Учёные из крупных университетов США будут следить за тем, как развитие новейших технологий влияет на человеческую жизнь - безопасность, социальный уклад, психологию, транспорт и другие сферы. В сентябре 2016 года участники проекта выпустили первый доклад, в котором объясняют, как искусственный интеллект уже изменил мир за последние 15 лет, и делают прогнозы на будущее. «Секрет фирмы» прочитал доклад и рассказывает, какие достижения XXI века авторы считают главными, как будут дальше развиваться технологии и к каким опасностям это может привести.

Что такое искусственный интеллект

Искусственный интеллект - это одновременно и область науки, и набор вычислительных технологий. Отчасти они созданы по образцу человеческого организма, где нервная система позволяет нам чувствовать, получать информацию, думать и принимать решения. Удивительно, но у понятия «искусственный интеллект» нет одного чёткого определения, и это совсем не мешает его развитию. Если пытаться объяснить, что это, правильнее всего будет сказать, что искусственный интеллект - это направление технологических разработок, которое делает механизмы умными, а умные механизмы - это те, которые могут действовать правильно в зависимости от обстоятельств.

За последние 15 лет разработки в области искусственного интеллекта стали частью повседневной жизни: они используются, например, при создании компьютерных игр, бытовой техники или личных помощников для мобильных телефонов, распознающих голос. С годами умные технологии будут всё лучше подстраиваться под владельцев: следить за их здоровьем, предупреждать об опасностях и мгновенно предоставлять любые нужные услуги. На многих производствах роботы уже выполняют большую часть работы. При этом с развитием искусственного интеллекта появляется и много новых вопросов: кто должен брать на себя ответственность, если беспилотный автомобиль попадает в аварию, а интеллектуальное медицинское устройство ошибается? Чем будут зарабатывать на жизнь люди, чьи навыки стали не нужны с появлением роботов? Проект AI100 должен в том числе ответить на подобные вопросы.

Транспорт

Автономный транспорт уже в ближайшие 15 лет может стать обычным явлением. Его разработчики предлагают обществу доверить свою безопасность искусственному интеллекту, поэтому беспилотное оборудование начнут массово использовать, когда оно станет для этого достаточно надёжным.

В 2000 году беспилотные автомобили существовали только в виде образцов в лабораториях и выпускать их в город было слишком опасно. Но сегодня беспилотник от Google уже может проехать почти 500 000 км, ни разу не попав в аварию, а Tesla начала выпускать полуавтономные машины с обновляемым программным обеспечением. Предполагается, что в таком автомобиле человек должен постоянно оставаться за рулём, следить за дорогой и брать управление на себя, если с механизмом что-то случается. Правда, тут есть риск, что водитель, доверившись беспилотнику, потеряет контроль над ситуацией. Как в таком случае избежать катастрофы, пока непонятно. Этот вопрос встал особенно остро, когда летом 2016 года полуавтономный автомобиль Tesla попал в первую аварию со смертельным исходом.

Тем не менее, авторы доклада считают, что уже к 2020 году беспилотники будут широко использоваться, причём не только для индивидуального передвижения, но и для перевозки грузов и работы сервисов доставки. При этом станет меньше смертей из-за несчастных случаев, а средняя продолжительность человеческой жизни увеличится.

Со временем, когда механизмы научатся управлять транспортом лучше, чем люди, горожане станут реже покупать собственные автомобили и будут селиться дальше от работы. Это повлияет и на городскую среду, и на то, как люди будут проводить свободное время. Уже сегодня трудно представить себе дорожное движение без использования умных технологий: навигационные устройства для автомобилей начали использоваться в 2001 году, и за 15 лет огромное количество водителей привыкли выстраивать маршруты и рассчитывать длительность поездок с помощью смартфонов. Сегодня у американских автомобилей бывает примерно по 70 разных датчиков: гироскопы, датчики влажности и другие. Современные машины помогают водителям парковаться и предупреждают об объектах, которые находятся в слепой зоне.

Бытовые обязанности

Авторы доклада считают, что через 15 лет в среднестатистическом североамериканском городе существенную часть бытовых обязанностей смогут взять на себя роботы: они будут доставлять посылки и наводить чистоту в офисах, следить за безопасностью. Но, как и в ситуации с автономными автомобилями, сделать умные устройства в этой области по-настоящему надёжными довольно трудно и дорого.

Первым домашним роботом на рынке в 2001 году стал пылесос Electrolux Trilobite, который умеет самостоятельно передвигаться и обходить препятствия. Через год компания iRobot выпустила пылесос Roomba: у него было всего 512 Мб оперативной памяти и самое умное, что он мог сделать, - не упасть с лестницы во время уборки. Но стоил он в десять раз дешевле предшественника. С того момента компания успела продать уже 16 млн пылесосов Roomba, а роботизированные пылесосы теперь есть и у других производителей. Эти устройства становятся всё более простыми в использовании, они научились сами очищать пылесборники и не застревать, наткнувшись на провода или кисти ковра. Благодаря искусственному интеллекту пылесосы выстраивают 3D-модель дома и убираются куда более эффективно.

И всё-таки далеко не все надежды на новейшие технологии оправдались. Умные пылесосы по-прежнему могут справляться только с ровными поверхностями, а новинок на рынке появилось не так много, как можно было ожидать.

Здравоохранение

Медицина с самого начала считалась перспективным направлением для тех, кто работает с искусственным интеллектом - новейшие технологии могли бы уже в ближайшие годы помочь миллионам людей. Но для этого нужно, чтобы и врачи, и сами пациенты начали доверять устройствам и чтобы исчезли политические, нормативные и коммерческие препоны.

На сегодняшний день в здравоохранении в основном используются приложения и устройства, которые облегчают диагностику, следят за состоянием пациента и помогают хирургам проводить операции. Но в последнее время стало понятно, что искусственный интеллект способен на многое другое: например, определять по социальным сетям, какие опасности могут угрожать здоровью человека.

Основной прогресс искусственного интеллекта в области медицины связан со сбором и хранением данных: например, появились электронные медицинские карты (ЭМК), которые хранят всю информацию о болезнях пациента и оказанных ему услугах и составляют медицинские документы. Правда, рынок ЭМК находится под контролем очень небольшой группы компаний, а сами программы неудобны в использовании - например, врачей, которые ими пользуются, раздражают всплывающие окна.

Искусственный интеллект - направление разработок, которое делает механизмы «умными» - действующими правильно в любых обстоятельствах

Зато в следующие 15 лет компьютеры научатся самостоятельно принимать жалобы пациентов и определять, с каким заболеванием обратился человек и как его стоит лечить. Сегодня врачи тратят много времени и сил на то, чтобы общаться с пациентом и проводить диагностику, а в будущем они будут лишь контролировать этот процесс - это снизит рабочую нагрузку терапевтов. Многие из них уже сейчас пользуются специальными приложениями на смартфонах.

Роботы, которые помогают делать операции, тоже перестали быть научной фантастикой. В 2000 году компания IIntuitive Surgical выпустила хирургическую систему Da Vinci, которая умела проводить коронарное шунтирование. После крупных денежных вложений её научили также удалять рак простаты.

Образование

Самой успешной областью для разработчиков искусственного интеллекта стало образование. И преподаватели, и ученики постоянно пользуются приложениями для чтения и изучения разных предметов. Первые устройства для обучения начали появляться ещё в 80-х годах прошлого века: системы с интерактивными тренажёрами для занятий математикой, иностранными языками и многими другими дисциплинами - а теперь онлайн-обучение позволяет каждому преподавателю заметно расширить аудиторию. Авторы доклада считают, что этот процесс будет развиваться и дальше, но всё-таки живые учителя из школ не исчезнут и по-прежнему будут вести основные предметы.

Сегодня многие компании выпускают обучающих роботов, которых используют в школах. Например, Ozobot помогает ученикам младших классов с программированием, а ещё он умеет танцевать и играть в специальные игры на сенсорном экране. Приложения вроде Duolingo и Carnegie Speech обучают иностранным языкам, используя систему распознавания речи и техники НЛП, а система обучения SHERLOCK тренирует студентов-авиатехников распознавать неполадки в электрических системах самолёта.

Сейчас специалисты разрабатывают технологии, которые смогут анализировать ошибки студентов, определять самые трудные места в учебной программе и помогать учащимся колледжей и университетов в проблемных темах. Прогресс в США мог бы быть ещё более заметным, если бы государство выделяло больше денег на развитие учебных заведений. Впрочем, авторы доклада считают, что и здесь в слишком быстром развитии технологий есть своя опасность. Сегодня молодые люди всё больше времени проводят за компьютером, им не хватает живого общения, и они утрачивают социальные навыки. Если через несколько лет студентам вообще не нужно будет выходить на улицу и общаться с кем-то, чтобы получить образование, это плохо скажется на их психике и развитии.

Понравилась статья? Поделитесь ей
Наверх