По закону всемирного тяготения. Закон всемирного тяготения формула ньютона

Аристотель утверждал, что массивные предметы падают на землю быстрее лёгких.

Ньютон предположил, что Луну следует рассматривать как снаряд, который движется по искривленной траектории, поскольку на него действует земное тяготение. Поверхность Земли тоже искривлена, так что при достаточно быстром движении снаряда его искривленная траектория будет следовать за кривизной Земли, и он станет «падать» вокруг планеты. Если увеличить скорость снаряда, его траектория вокруг Земли вытянется в эллипс.

Галилей в начале XVII века показал, что все предметы падают «одинаково». И примерно в то же время Кеплер задумывался, что заставляет планеты двигаться по своим орбитам. Быть может, это магнетизм? Исаак Ньютон, работая над « », свел все эти движения к действию единой силы, называемой гравитацией, которая подчиняется простым универсальным законам.

Галилей экспериментально показал, что путь, пройденный телом, падающим под действием гравитации, пропорционален квадрату времени падения: шар, падающий в течение двух секунд, пройдет вчетверо больший путь, чем такой же предмет в течение одной секунды. Также Галилей показал, что скорость прямо пропорциональна времени падения, и вывел отсюда, что пушечное ядро летит по параболической траектории — одному из видов конических сечений, как и эллипсы, по которым, согласно Кеплеру, движутся планеты. Но откуда эта связь?

Когда в середине 1660-х годов Кембриджский университет закрылся на время Великой эпидемии чумы, Ньютон вернулся в семейную усадьбу и там сформулировал свой закон тяготения, хотя и держал его потом в тайне еще 20 лет. (Историю об упавшем яблоке никто не слыхал, пока восьмидесятилетний Ньютон не рассказал эту байку после большого званого ужина.)

Он предположил, что все предметы во Вселенной порождают гравитационную силу, притягивающую другие объекты (подобно тому, как яблоко притягивается к Земле), и эта самая сила гравитации определяет траектории, по которым движутся в космосе звезды, планеты и другие небесные тела.

На склоне своих дней Исаак Ньютон рассказал, как это произошло: он гулял по яблоневому саду в поместье своих родителей и вдруг увидел луну в дневном небе. И тут же на его глазах с ветки оторвалось и упало на землю яблоко. Поскольку Ньютон в это самое время работал над законами движения, он уже знал, что яблоко упало под воздействием гравитационного поля Земли. Знал он и о том, что Луна не просто висит в небе, а вращается по орбите вокруг Земли, и, следовательно, на нее воздействует какая-то сила, которая удерживает ее от того, чтобы сорваться с орбиты и улететь по прямой прочь, в открытый космос. Тут ему и пришло в голову, что, возможно, это одна и та же сила заставляет и яблоко падать на землю, и Луну оставаться на околоземной орбите.

Закон обратных квадратов

Ньютон сумел рассчитать величину ускорения Луны под влиянием земной гравитации и нашел, что она в тысячи раз меньше, чем ускорение предметов (того же яблока) вблизи Земли. Как такое может быть, если они движутся под действием одной и той же силы?

Объяснение Ньютона состояло в том, что сила тяготения ослабевает с расстоянием. Объект на поверхности Земли в 60 раз ближе к центру планеты, чем Луна. Притяжение на орбите Луны составляет 1/3600, или 1/602, от того, что действует на яблоко. Таким образом, сила притяжения между двумя объектами — будь это Земля и яблоко, Земля и Луна или Солнце и комета — обратно пропорциональна квадрату разделяющего их расстояния. Удвойте расстояние, и сила уменьшится вчетверо, утройте его — сила станет меньше в девять раз и т. д. Сила также зависит от масс объектов — чем больше масса, тем сильнее гравитация.

Закон всемирного тяготения можно записать в виде формулы:
F = G(Mm/r 2).

Где: сила гравитации равна произведению большей массы M и меньшей массы m , деленному на квадрат расстояния между ними r 2 и помноженному на гравитационную постоянную, обозначаемую заглавной буквой G (строчная g обозначает вызванное тяготением ускорение).

Эта постоянная определяет притяжение между любыми двумя массами в любой точке Вселенной. В 1789 году ее использовали для вычисления массы Земли (6·1024 кг). Законы Ньютона замечательно предсказывают силы и движения в системе из двух объектов. Но при добавлении третьего всё значительно усложняется и приводит (спустя 300 лет) к математике хаоса.

Исаак Ньютон выдвинул предположение, что между любыми телами в природе существуют силы взаимного притяжения. Эти силы называют силами гравитации или силами всемирного тяготения . Сила несмирного тяготения проявляется в космосе, Солнечной системе и на Земле.

Закон всемирного тяготения

Ньютон обобщил законы движения небесных тел и выяснил, что сила \(F \) равна:

\[ F = G \dfrac{m_1 m_2}{R^2} \]

где \(m_1 \) и \(m_2 \) - массы взаимодействующих тел, \(R \) - расстояние между ними, \(G \) - коэффициент пропорциональности, который называется гравитационной постоянной . Численное значение гравитационной постоянной опытным путем определил Кавендиш, измеряя силу взаимодействия между свинцовыми шарами.

Физический смысл гравитационной постоянной вытекает из закона всемирного тяготения. Если \(m_1 = m_2 = 1 \text{кг} \) , \(R = 1 \text{м} \) , то \(G = F \) , т. е. гравитационная постоянная равна силе, с которой притягиваются два тела по 1 кг на расстоянии 1 м.

Численное значение:

\(G = 6,67 \cdot{} 10^{-11} Н \cdot{} м^2/ кг^2 \) .

Силы всемирного тяготения действуют между любыми телами в природе, но ощутимыми они становятся при больших массах (или если хотя бы масса одного из тел велика). Закон же всемирного тяготения выполняется только для материальных точек и шаров (в этом случае за расстояние принимается расстояние между центрами шаров).

Сила тяжести

Частным видом силы всемирного тяготения является сила притяжения тел к Земле (или к другой планете). Эту силу называют силой тяжести . Под действием этой силы все тела приобретают ускорение свбодного падения.

В соответствии со вторым законом Ньютона \(g = F_Т /m \) , следовательно, \(F_T = mg \) .

Если M – масса Земли, R – ее радиус, m – масса данного тела, то сила тяжести равна

\(F = G \dfrac{M}{R^2}m = mg \) .

Сила тяжести всегда направлена к центру Земли. В зависимости от высоты \(h \) над поверхностью Земли и географической широты положения тела ускорение свободного падения приобретает различные значения. На поверхности Земли и в средних широтах ускорение свободного падения равно 9,831 м/с 2 .

Вес тела

В технике и быту широко используется понятие веса тела.

Вес тела обозначается \(P \) . Единица веса - ньютон (Н ). Так как вес равен силе, с которой тело действует на опору, то в соответствии с третьим законом Ньютона по величине вес тела равен силе реакции опоры. Поэтому, чтобы найти вес тела, необходимо определить, чему равна сила реакции опоры.

При этом предполагается, что тело неподвижно относительно опоры или подвеса.

Вес тела и сила тяжести отличаются по своей природе: вес тела является проявлением действия межмолекулярных сил, а сила тяжести имеет гравитационную природу.

Состояние тела, в котором его вес равен нулю, называют невесомостью . Состояние невесомости наблюдается в самолете или космическом корабле при движении с ускорением свободного падения независимо от направления и значения скорости их движения. За пределами земной атмосферы при выключении реактивных двигателей на космический корабль действует только сила всемирного тяготения. Под действием этой силы космический корабль и все тела, находящиеся в нем, движутся с одинаковым ускорением, по¬этому в корабле наблюдается состояние невесомости.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Класси́ческая тео́рия тяготе́ния Ньютона (Зако́н всемирного тяготе́ния Ньютона) - закон, описывающий гравитационное взаимодействие в рамках классической механики . Этот закон был открыт Ньютоном около 1666 года. Он гласит, что сила F {\displaystyle F} гравитационного притяжения между двумя материальными точками массы m 1 {\displaystyle m_{1}} и m 2 {\displaystyle m_{2}} , разделёнными расстоянием R {\displaystyle R} , пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними - то есть:

F = G ⋅ m 1 ⋅ m 2 R 2 {\displaystyle F=G\cdot {m_{1}\cdot m_{2} \over R^{2}}}

Здесь G {\displaystyle G} - гравитационная постоянная , равная 6,67408(31)·10 −11 м³/(кг·с²) :.

Энциклопедичный YouTube

    1 / 5

    ✪ Введение в закон всемирного тяготения Ньютона

    ✪ Закон Всемирного тяготения

    ✪ физика ЗАКОН ВСЕМИРНОГО ТЯГОТЕНИЯ 9 класс

    ✪ Про Исаака Ньютона (Краткая история)

    ✪ Урок 60. Закон всемирного тяготения. Гравитационная постоянная

    Субтитры

    Теперь немного узнаем о тяготении, или гравитации. Как вы знаете, тяготение, особенно в начальном или даже в довольно углубленном курсе физики - это такое понятие, которое можно вычислить и узнать основные параметры, которыми оно обусловлено, но на самом деле тяготение не вполне поддается пониманию. Пусть даже вы знакомы с общей теорией относительности - если вас спросят, что такое тяготение, вы можете ответить: это искривление пространства-времени и тому подобное. Однако все равно трудно получить интуитивное представление, по какой причине два объекта, только лишь потому, что у них есть так называемая масса, притягиваются друг к другу. По крайней мере, для меня это мистика. Отметив это, приступим к рассмотрению понятия о тяготении. Будем делать это, изучая закон всемирного тяготения Ньютона, справедливый для большинства ситуаций. Этот закон гласит: сила взаимного гравитационного притяжения F между двумя материальными точками, обладающими массами m₁ и m₂, равна произведению гравитационной постоянной G на массу первого объекта m₁ и второго объекта m₂, деленному на квадрат расстояния d между ними. Это довольно несложная формула. Попробуем преобразовать ее и посмотрим, нельзя ли получить какие-то хорошо знакомые нам результаты. Используем эту формулу для расчета ускорения свободного падения вблизи поверхности Земли. Давайте нарисуем сперва Землю. Просто чтобы понимать, о чем мы с вами говорим. Это наша Земля. Допустим, нам надо вычислить гравитационное ускорение, действующее на Сэла, то есть на меня. Вот он я. Попытаемся применить это уравнение для расчета величины ускорения моего падения к центру Земли, или к центру масс Земли. Величина, обозначенная заглавной буквой G - это универсальная гравитационная постоянная. Еще раз: G - это универсальная гравитационная постоянная. Хотя, насколько я знаю, хоть я и не эксперт в этом вопросе, мне кажется, ее значение может меняться, то есть это не настоящая постоянная, и я предполагаю, что при разных измерениях ее величина различается. Но для наших потребностей, а также в большинстве курсов физики, это постоянная, константа, равная 6,67 * 10^(−11) кубических метров, деленных на килограмм на секунду в квадрате. Да, ее размерность выглядит странно, но вам достаточно понять, что это - условные единицы, необходимые, чтобы в результате умножения на массы объектов и деления на квадрат расстояния получить размерность силы - ньютон, или килограмм на метр, деленный на секунду в квадрате. Так что об этих единицах измерения не стоит беспокоиться: просто знайте, что нам придется работать с метрами, секундами и килограммами. Подставим это число в формулу для силы: 6,67 * 10^(−11). Поскольку нам нужно знать ускорение, действующее на Сэла, то m₁ равна массе Сэла, то есть меня. Не хотелось бы разоблачать в этом сюжете, сколько я вешу, так что оставим эту массу переменной, обозначив ms. Вторая масса в уравнении - это масса Земли. Выпишем ее значение, заглянув в Википедию. Итак, масса Земли равна 5,97 * 10^24 килограммов. Да, Земля помассивнее Сэла. Кстати, вес и масса - разные понятия. Итак, сила F равна произведению гравитационной постоянной G на массу ms, затем на массу Земли, и все это делим на квадрат расстояния. Вы можете возразить: какое же расстояние между Землей и тем, что на ней стоит? Ведь если предметы соприкасаются, расстояние равно нулю. Здесь важно понять: расстояние между двумя объектами в данной формуле - это расстояние между их центрами масс. В большинстве случаев центр масс человека расположен примерно в трех футах над поверхностью Земли, если человек не слишком высокий. Как бы там ни было, мой центр масс может находиться на высоте три фута над землей. А где центр масс Земли? Очевидно, в центре Земли. А радиус Земли у нас равен чему? 6371 километр, или примерно 6 миллионов метров. Поскольку высота моего центра масс составляет около одной миллионной расстояния до центра масс Земли, то в данном случае ею можно пренебречь. Тогда расстояние будет равно 6 и так далее, как и все остальные величины, нужно записать его в стандартном виде - 6,371 * 10^6, поскольку 6000 км - это 6 миллионов метров, а миллион - это 10^6. Пишем, округляя все дроби до второго знака после запятой, расстояние равно 6,37 * 10^6 метров. В формуле стоит квадрат расстояния, поэтому возведем все в квадрат. Попробуем теперь упростить. Вначале перемножим величины в числителе и вынесем вперед переменную ms. Тогда сила F равна массе Сэла на всю верхнюю часть, вычислим ее отдельно. Итак, 6,67 умножить на 5,97 равно 39,82. 39,82. Это произведение значащих частей, которое теперь следует умножить на 10 в нужной степени. 10^(−11) и 10^24 имеют одинаковое основание, поэтому для их перемножения достаточно сложить показатели степени. Сложив 24 и −11, получим 13, в итоге имеем 10^13. Найдем знаменатель. Он равен 6,37 в квадрате, умноженное на 10^6 также в квадрате. Как вы помните, если число, записанное в виде степени, возводится в другую степень, то показатели степеней перемножаются, а значит, 10^6 в квадрате равно 10 в степени 6, умноженной на 2, или 10^12. Далее вычислим квадрат числа 6,37 с помощью калькулятора и получим… Возводим 6,37 в квадрат. И это 40,58. 40,58. Осталось разделить 39,82 на 40,58. Делим 39,82 на 40,58, что равняется 0,981. Потом делим 10^13 на 10^12, что равно 10^1, или просто 10. А 0,981, умноженное на 10, это 9,81. После упрощения и несложных расчетов получили, что сила тяготения вблизи поверхности Земли, действующая на Сэла, равна массе Сэла, умноженной на 9,81. Что нам это дает? Можно ли теперь вычислить гравитационное ускорение? Известно, что сила равна произведению массы на ускорение, поэтому и сила тяготения просто равна произведению массы Сэла на гравитационное ускорение, которое принято обозначать строчной буквой g. Итак, с одной стороны, сила притяжения равна числу 9,81, умноженному на массу Сэла. С другой, она же равна массе Сэла на гравитационное ускорение. Разделив обе части равенства на массу Сэла, получим, что коэффициент 9,81 и есть гравитационное ускорение. И если бы мы включили в расчеты полную запись единиц размерности, то, сократив килограммы, увидели бы, что гравитационное ускорение измеряется в метрах, деленных на секунду в квадрате, как и любое ускорение. Также можно заметить, что полученное значение очень близко к тому, которое мы использовали при решении задач о движении брошенного тела: 9,8 метров в секунду в квадрате. Это впечатляет. Решим еще одну короткую задачу на тяготение, потому что у нас осталось пара минут. Предположим, у нас есть другая планета под названием Земля Малышка. Пусть радиус Малышки rS вдвое меньше радиуса Земли rE, и ее масса mS также равна половине массы Земли mE. Чему будет равна сила тяжести, действующая здесь на какой-либо объект, и насколько она меньше силы земного тяготения? Хотя, давайте оставим задачу на следующий раз, потом ее решу. До встречи. Subtitles by the Amara.org community

Свойства ньютоновского тяготения

В ньютоновской теории каждое массивное тело порождает силовое поле притяжения к этому телу, которое называется гравитационным полем . Это поле потенциально , и функция гравитационного потенциала для материальной точки с массой M {\displaystyle M} определяется формулой:

φ (r) = − G M r . {\displaystyle \varphi (r)=-G{\frac {M}{r}}.}

В общем случае, когда плотность вещества ρ {\displaystyle \rho } распределена произвольно, удовлетворяет уравнению Пуассона :

Δ φ = − 4 π G ρ (r) . {\displaystyle \Delta \varphi =-4\pi G\rho (r).}

Решение этого уравнения записывается в виде:

φ = − G ∫ ρ (r) d V r + C , {\displaystyle \varphi =-G\int {\frac {\rho (r)dV}{r}}+C,}

где r {\displaystyle r} - расстояние между элементом объёма d V {\displaystyle dV} и точкой, в которой определяется потенциал φ {\displaystyle \varphi } , C {\displaystyle C} - произвольная постоянная.

Сила притяжения, действующая в гравитационном поле на материальную точку с массой m {\displaystyle m} , связана с потенциалом формулой:

F (r) = − m ∇ φ (r) . {\displaystyle F(r)=-m\nabla \varphi (r).}

Сферически симметричное тело создаёт за своими пределами такое же поле, как материальная точка той же массы, расположенная в центре тела.

Траектория материальной точки в гравитационном поле, создаваемом много большей по массе материальной точкой, подчиняется законам Кеплера . В частности, планеты и кометы в Солнечной системе движутся по эллипсам или гиперболам . Влияние других планет, искажающее эту картину, можно учесть с помощью теории возмущений .

Точность закона всемирного тяготения Ньютона

Экспериментальная оценка степени точности закона тяготения Ньютона является одним из подтверждений общей теории относительности . Опыты по измерению квадрупольного взаимодействия вращающегося тела и неподвижной антенны показали , что приращение δ {\displaystyle \delta } в выражении для зависимости ньютоновского потенциала r − (1 + δ) {\displaystyle r^{-(1+\delta)}} на расстояниях нескольких метров находится в пределах (2 , 1 ± 6 , 2) ∗ 10 − 3 {\displaystyle (2,1\pm 6,2)*10^{-3}} . Другие опыты также подтвердили отсутствие модификаций в законе всемирного тяготения .

Закон всемирного тяготения Ньютона в 2007 г. был проверен и на расстояниях, меньших одного сантиметра (от 55 мкм до 9,53 мм). С учетом погрешностей эксперимента в исследованном диапазоне расстояний отклонений от закона Ньютона не обнаружено .

Прецизионные лазерные дальнометрические наблюдения за орбитой Луны подтверждают закон всемирного тяготения на расстоянии от Земли до Луны с точностью 3 ⋅ 10 − 11 {\displaystyle 3\cdot 10^{-11}} .

Связь с геометрией евклидова пространства

Факт равенства с очень высокой точностью 10 − 9 {\displaystyle 10^{-9}} показателя степени расстояния в знаменателе выражения для силы тяготения числу 2 {\displaystyle 2} отражает евклидову природу трёхмерного физического пространства механики Ньютона. В трёхмерном евклидовом пространстве площадь поверхности сферы точно пропорциональна квадрату её радиуса

Исторический очерк

Сама идея всеобщей силы тяготения неоднократно высказывалась и до Ньютона. Ранее о ней размышляли Эпикур , Гассенди , Кеплер , Борелли , Декарт , Роберваль , Гюйгенс и другие . Кеплер полагал, что тяготение обратно пропорционально расстоянию до Солнца и распространяется только в плоскости эклиптики; Декарт считал его результатом вихрей в эфире . Были, впрочем, догадки с правильной зависимостью от расстояния; Ньютон в письме к Галлею упоминает как своих предшественников Буллиальда , Рена и Гука . Но до Ньютона никто не сумел ясно и математически доказательно связать закон тяготения (силу, обратно пропорциональную квадрату расстояния) и законы движения планет (законы Кеплера).

  • закон тяготения;
  • закон движения (второй закон Ньютона);
  • система методов для математического исследования (математический анализ).

В совокупности эта триада достаточна для полного исследования самых сложных движений небесных тел, тем самым создавая основы небесной механики . До Эйнштейна никаких принципиальных поправок к указанной модели не понадобилось, хотя математический аппарат оказалось необходимым значительно развить.

Отметим, что теория тяготения Ньютона уже не была, строго говоря, гелиоцентрической . Уже в задаче двух тел планета вращается не вокруг Солнца, а вокруг общего центра тяжести, так как не только Солнце притягивает планету, но и планета притягивает Солнце. Наконец, выяснилась необходимость учесть влияние планет друг на друга.

В течение XVIII века закон всемирного тяготения был предметом активной дискуссии (против него выступали сторонники школы Декарта) и тщательных проверок. К концу века стало общепризнано, что закон всемирного тяготения позволяет с огромной точностью объяснить и предсказать движения небесных тел. Генри Кавендиш в 1798 году осуществил прямую проверку справедливости закона тяготения в земных условиях, используя исключительно чувствительные крутильные весы . Важным этапом стало введение Пуассоном в 1813 году понятия гравитационного потенциала и уравнения Пуассона для этого потенциала; эта модель позволяла исследовать гравитационное поле при произвольном распределении вещества . После этого ньютоновский закон стал рассматриваться как фундаментальный закон природы.

В то же время ньютоновская теория содержала ряд трудностей. Главная из них - необъяснимое дальнодействие : сила притяжения передавалась непонятно как через совершенно пустое пространство, причём бесконечно быстро. По существу ньютоновская модель была чисто математической, без какого-либо физического содержания. Кроме того, если Вселенная, как тогда предполагали, евклидова и бесконечна, и при этом средняя плотность вещества в ней ненулевая, то возникает гравитационный парадокс . В конце XIX века обнаружилась ещё одна проблема: расхождение теоретического и наблюдаемого смещения перигелия Меркурия .

Дальнейшее развитие

Общая теория относительности

На протяжении более двухсот лет после Ньютона физики предлагали различные пути усовершенствования ньютоновской теории тяготения. Эти усилия увенчались успехом в 1915 году , с созданием общей теории относительности Эйнштейна , в которой все указанные трудности были преодолены. Теория Ньютона, в полном согласии с принципом соответствия , оказалась приближением более общей теории, применимым при выполнении двух условий:

В слабых стационарных гравитационных полях уравнения движения переходят в ньютоновы (гравитационный потенциал). Для доказательства покажем, что скалярный гравитационный потенциал в слабых стационарных гравитационных полях удовлетворяет уравнению Пуассона

Δ Φ = − 4 π G ρ {\displaystyle \Delta \Phi =-4\pi G\rho } .

Известно (Гравитационный потенциал), что в этом случае гравитационный потенциал имеет вид:

Φ = − 1 2 c 2 (g 44 + 1) {\displaystyle \Phi =-{\frac {1}{2}}c^{2}(g_{44}+1)} .

Найдем компоненту тензора энергии-импульса из уравнений гравитационного поля общей теории относительности:

R i k = − ϰ (T i k − 1 2 g i k T) {\displaystyle R_{ik}=-\varkappa (T_{ik}-{\frac {1}{2}}g_{ik}T)} ,

где R i k {\displaystyle R_{ik}} - тензор кривизны . Для мы можем ввести кинетический тензор энергии-импульса ρ u i u k {\displaystyle \rho u_{i}u_{k}} . Пренебрегая величинами порядка u / c {\displaystyle u/c} , можно положить все компоненты T i k {\displaystyle T_{ik}} , кроме T 44 {\displaystyle T_{44}} , равными нулю. Компонента T 44 {\displaystyle T_{44}} равна T 44 = ρ c 2 {\displaystyle T_{44}=\rho c^{2}} и, следовательно T = g i k T i k = g 44 T 44 = − ρ c 2 {\displaystyle T=g^{ik}T_{ik}=g^{44}T_{44}=-\rho c^{2}} . Таким образом, уравнения гравитационного поля принимают вид R 44 = − 1 2 ϰ ρ c 2 {\displaystyle R_{44}=-{\frac {1}{2}}\varkappa \rho c^{2}} . Вследствие формулы

R i k = ∂ Γ i α α ∂ x k − ∂ Γ i k α ∂ x α + Γ i α β Γ k β α − Γ i k α Γ α β β {\displaystyle R_{ik}={\frac {\partial \Gamma _{i\alpha }^{\alpha }}{\partial x^{k}}}-{\frac {\partial \Gamma _{ik}^{\alpha }}{\partial x^{\alpha }}}+\Gamma _{i\alpha }^{\beta }\Gamma _{k\beta }^{\alpha }-\Gamma _{ik}^{\alpha }\Gamma _{\alpha \beta }^{\beta }}

значение компоненты тензора кривизны R 44 {\displaystyle R_{44}} можно взять равным R 44 = − ∂ Γ 44 α ∂ x α {\displaystyle R_{44}=-{\frac {\partial \Gamma _{44}^{\alpha }}{\partial x^{\alpha }}}} и так как Γ 44 α ≈ − 1 2 ∂ g 44 ∂ x α {\displaystyle \Gamma _{44}^{\alpha }\approx -{\frac {1}{2}}{\frac {\partial g_{44}}{\partial x^{\alpha }}}} , R 44 = 1 2 ∑ α ∂ 2 g 44 ∂ x α 2 = 1 2 Δ g 44 = − Δ Φ c 2 {\displaystyle R_{44}={\frac {1}{2}}\sum _{\alpha }{\frac {\partial ^{2}g_{44}}{\partial x_{\alpha }^{2}}}={\frac {1}{2}}\Delta g_{44}=-{\frac {\Delta \Phi }{c^{2}}}} . Таким образом, приходим к уравнению Пуассона:

Δ Φ = 1 2 ϰ c 4 ρ {\displaystyle \Delta \Phi ={\frac {1}{2}}\varkappa c^{4}\rho } , где ϰ = − 8 π G c 4 {\displaystyle \varkappa =-{\frac {8\pi G}{c^{4}}}}

Квантовая гравитация

Однако и общая теория относительности не является окончательной теорией гравитации, так как неудовлетворительно описывает гравитационные процессы в квантовых масштабах (на расстояниях порядка планковского , около 1,6⋅10 −35 ). Построение непротиворечивой квантовой теории гравитации - одна из важнейших нерешённых задач современной физики.

С точки зрения квантовой гравитации, гравитационное взаимодействие осуществляется путём обмена виртуальными гравитонами между взаимодействующими телами. Согласно принципу неопределенности , энергия виртуального гравитона обратно пропорциональна времени его существования от момента излучения одним телом до момента поглощения другим телом. Время существования пропорционально расстоянию между телами. Таким образом, на малых расстояниях взаимодействующие тела могут обмениваться виртуальными гравитонами с короткими и длинными длинами волн, а на больших расстояниях только длинноволновыми гравитонами. Из этих соображений можно получить закон обратной пропорциональности ньютоновского потенциала от расстояния. Аналогия между законом Ньютона и законом Кулона объясняется тем, что масса гравитона, как и масса

На склоне своих лет рассказал о том, как он открыл закон всемирного тяготения .

Когда молодой Исаак гулял в саду среди яблонь в поместье своих родителей, он увидел луну в дневном небе. И рядом с ним упало яблоко на землю, сорвавшись с ветки.

Поскольку Ньютон в это самое время работал над законами движения, он уже знал, что яблоко упало под воздействием гравитационного поля Земли. И знал, что Луна не просто находится на небе, а вращается вокруг Земли по орбите, и, следовательно, на нее воздействует какая-то сила, которая удерживает ее от того, чтобы сорваться с орбиты и улететь по прямой прочь, в открытый космос. Вот тут и пришла ему идея о том, что, возможно, одна и та же сила заставляет яблоко падать на землю, и Луну оставаться на околоземной орбите.

До Ньютона ученые считали, что имеются два типа гравитации: земная гравитация (действующая на Земле) и небесная гравитация (действующая на небесах). Такое представление прочно закрепилось в сознании людей того времени.

Прозрение Ньютона заключалось в том, что он объединил эти два типа гравитации в своем сознании. С этого исторического момента искусственное и ложное разделение Земли и остальной Вселенной прекратило свое существование.

Так и был открыт закон всемирного тяготения, который является одним из универсальных законов природы. Согласно закону, все материальные тела притягивают друг друга, причём величина силы тяготения не зависит от химических и физических свойств тел, от состояния их движения, от свойств среды, где находятся тела. Тяготение на Земле проявляется, прежде всего, в существовании силы тяжести, являющейся результатом притяжения всякого материального тела Землёй. С этим связан термин «гравитация» (от лат. gravitas - тяжесть) , эквивалентный термину «тяготение».

Закон тяготения гласит, что сила гравитационного притяжения между двумя материальными точками массы m1 и m2, разделёнными расстоянием R, пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними.

Сама идея всеобщей силы тяготения неоднократно высказывалась и до Ньютона. Ранее о ней размышляли Гюйгенс, Роберваль, Декарт, Борелли, Кеплер, Гассенди, Эпикур и другие.

По предположению Кеплера, тяготение обратно пропорционально расстоянию до Солнца и распространяется только в плоскости эклиптики; Декарт считал его результатом вихрей в эфире.

Были, впрочем, догадки с правильной зависимостью от расстояния, но до Ньютона никто так и не сумел ясно и математически доказательно связать закон тяготения (силу, обратно пропорциональную квадрату расстояния) и законы движения планет (законы Кеплера).

В своём основном труде «Математические начала натуральной философии» (1687 г.) Исаак Ньютон вывел закон тяготения, основываясь на эмпирических законах Кеплера, известных к тому времени.
Он показал, что:

    • наблюдаемые движения планет свидетельствуют о наличии центральной силы;
    • обратно, центральная сила притяжения приводит к эллиптическим (или гиперболическим) орбитам.

В отличие от гипотез предшественников, теория Ньютона имела ряд существенных отличий. Сэр Исаак опубликовал не только предполагаемую формулу закона всемирного тяготения, но фактически предложил целостную математическую модель:

    • закон тяготения;
    • закон движения (второй закон Ньютона);
    • система методов для математического исследования (математический анализ).

В совокупности эта триада достаточна для полного исследования самых сложных движений небесных тел, тем самым создавая основы небесной механики.

Но Исаак Ньютон оставил открытым вопрос о природе тяготения. Не было объяснено также и предположение о мгновенном распространении тяготения в пространстве (т. е. предположение о том, что с изменением положений тел мгновенно изменяется и сила тяготения между ними), тесно связанное с природой тяготения. На протяжении более двухсот лет после Ньютона физики предлагали различные пути усовершенствования ньютоновской теории тяготения. Только в 1915 году эти усилия увенчались успехом созданием общей теории относительности Эйнштейна , в которой все указанные трудности были преодолены.

«Физика - 10 класс»

Почему Луна движется вокруг Земли?
Что будет, если Луна остановится?
Почему планеты обращаются вокруг Солнца?

В главе 1 подробно говорилось о том, что земной шар сообщает всем телам у поверхности Земли одно и то же ускорение - ускорение свободного падения. Но если земной шар сообщает телу ускорение, то согласно второму закону Ньютона он действует на тело с некоторой силой. Силу, с которой Земля действует на тело, называют силой тяжести . Сначала найдём эту силу, а затем и рассмотрим силу всемирного тяготения.

Ускорение по модулю определяется из второго закона Ньютона:

В общем случае оно зависит от силы, действующей на тело, и его массы. Так как ускорение свободного падения не зависит от массы, то ясно, что сила тяжести должна быть пропорциональна массе:

Физическая величина - ускорение свободного падения, оно постоянно для всех тел.

На основе формулы F = mg можно указать простой и практически удобный метод измерения масс тел путём сравнения массы данного тела с эталоном единицы массы. Отношение масс двух тел равно отношению сил тяжести, действующих на тела:

Это значит, что массы тел одинаковы, если одинаковы действующие на них силы тяжести.

На этом основано определение масс путём взвешивания на пружинных или рычажных весах. Добиваясь того, чтобы сила давления тела на чашку весов, равная силе тяжести, приложенной к телу, была уравновешена силой давления гирь на другую чашку весов, равной силе тяжести, приложенной к гирям, мы тем самым определяем массу тела.

Сила тяжести, действующая на данное тело вблизи Земли, может считаться постоянной лишь на определенной широте у поверхности Земли. Если тело поднять или перенести в место с другой широтой, то ускорение свободного падения, а следовательно, и сила тяжести изменятся.


Сила всемирного тяготения.

Ньютон был первым, кто строго доказал, что причина, вызывающая падение камня на Землю, движение Луны вокруг Земли и планет вокруг Солнца, одна и та же. Это сила всемирного тяготения , действующая между любыми телами Вселенной.

Ньютон пришёл к выводу, что если бы не сопротивление воздуха, то траектория камня, брошенного с высокой горы (рис. 3.1) с определённой скоростью, могла бы стать такой, что он вообще никогда не достиг бы поверхности Земли, а двигался бы вокруг неё подобно тому, как планеты описывают в небесном пространстве свои орбиты.

Ньютон нашёл эту причину и смог точно выразить её в виде одной формулы - закона всемирного тяготения.

Так как сила всемирного тяготения сообщает всем телам одно и то же ускорение независимо от их массы, то она должна быть пропорциональна массе того тела, на которое действует:

«Тяготение существует ко всем телам вообще и пропорционально массе каждого из них... все планеты тяготеют друг к другу...» И. Ньютон

Но поскольку, например, Земля действует на Луну с силой, пропорциональной массе Луны, то и Луна по третьему закону Ньютона должна действовать на Землю с той же силой. Причём эта сила должна быть пропорциональна массе Земли. Если сила тяготения является действительно универсальной, то со стороны данного тела на любое другое тело должна действовать сила, пропорциональная массе этого другого тела. Следовательно, сила всемирного тяготения должна быть пропорциональна произведению масс взаимодействующих тел. Отсюда вытекает формулировка закона всемирного тяготения.

Закон всемирного тяготения:

Сила взаимного притяжения двух тел прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними:

Коэффициент пропорциональности G называется гравитационной постоянной .

Гравитационная постоянная численно равна силе притяжения между двумя материальными точками массой 1 кг каждая, если расстояние между ними равно 1 м. Ведь при массах m 1 = m 2 = 1 кг и расстоянии r = 1 м получаем G = F (численно).

Нужно иметь в виду, что закон всемирного тяготения (3.4) как всеобщий закон справедлив для материальных точек. При этом силы гравитационного взаимодействия направлены вдоль линии, соединяющей эти точки (рис. 3.2, а).

Можно показать, что однородные тела, имеющие форму шара (даже если их нельзя считать материальными точками, рис. 3.2, б), также взаимодействуют с силой, определяемой формулой (3.4). В этом случае r - расстояние между центрами шаров. Силы взаимного притяжения лежат на прямой, проходящей через центры шаров. Такие силы называются центральными . Тела, падение которых на Землю мы обычно рассматриваем, имеют размеры, много меньшие, чем земной радиус (R ≈ 6400 км).

Такие тела можно, независимо от их формы, рассматривать как материальные точки и определять силу их притяжения к Земле с помощью закона (3.4), имея в виду, что r есть расстояние от данного тела до центра Земли.

Брошенный на Землю камень отклонится под действием тяжести от прямолинейного пути и, описав кривую траекторию, упадёт наконец на Землю. Если его бросить с большей скоростью, то он упадёт дальше». И. Ньютон

Определение гравитационной постоянной.


Теперь выясним, как можно найти гравитационную постоянную. Прежде всего заметим, что G имеет определённое наименование. Это обусловлено тем, что единицы (и соответственно наименования) всех величин, входящих в закон всемирного тяготения, уже были установлены ранее. Закон же тяготения даёт новую связь между известными величинами с определёнными наименованиями единиц. Именно поэтому коэффициент оказывается именованной величиной. Пользуясь формулой закона всемирного тяготения, легко найти наименование единицы гравитационной постоянной в СИ: Н м 2 /кг 2 = м 3 /(кг с 2).

Для количественного определения G нужно независимо определить все величины, входящие в закон всемирного тяготения: обе массы, силу и расстояние между телами.

Трудность состоит в том, что гравитационные силы между телами небольших масс крайне малы. Именно по этой причине мы не замечаем притяжение нашего тела к окружающим предметам и взаимное притяжение предметов друг к другу, хотя гравитационные силы - самые универсальные из всех сил в природе. Два человека массами по 60 кг на расстоянии 1 м друг от друга притягиваются с силой всего лишь порядка 10 -9 Н. Поэтому для измерения гравитационной постоянной нужны достаточно тонкие опыты.

Впервые гравитационная постоянная была измерена английским физиком Г. Кавендишем в 1798 г. с помощью прибора, называемого крутильными весами. Схема крутильных весов показана на рисунке 3.3. На тонкой упругой нити подвешено лёгкое коромысло с двумя одинаковыми грузиками на концах. Рядом неподвижно закреплены два тяжёлых шара. Между грузиками и неподвижными шарами действуют силы тяготения. Под влиянием этих сил коромысло поворачивается и закручивает нить до тех пор, пока возникающая сила упругости не станет равна гравитационной силе. По углу закручивания можно определить силу притяжения. Для этого нужно только знать упругие свойства нити. Массы тел известны, а расстояние между центрами взаимодействующих тел можно непосредственно измерить.

Из этих опытов было получено следующее значение для гравитационной постоянной:

G = 6,67 10 -11 Н м 2 /кг 2 .

Лишь в том случае, когда взаимодействуют тела огромных масс (или по крайней мере масса одного из тел очень велика), сила тяготения достигает большого значения. Например, Земля и Луна притягиваются друг к другу с силой F ≈ 2 10 20 Н.


Зависимость ускорения свободного падения тел от географической широты.


Одна из причин увеличения ускорения свободного падения при перемещении точки, где находится тело, от экватора к полюсам, состоит в том, что земной шар несколько сплюснут у полюсов и расстояние от центра Земли до её поверхности у полюсов меньше, чем на экваторе. Другой причиной является вращение Земли.


Равенство инертной и гравитационной масс.


Самым поразительным свойством гравитационных сил является то, что они сообщают всем телам, независимо от их масс, одно и то же ускорение. Что бы вы сказали о футболисте, удар которого одинаково ускорял бы обыкновенный кожаный мяч и двухпудовую гирю? Каждый скажет, что это невозможно. А вот Земля является именно таким «необыкновенным футболистом» с той только разницей, что действие её на тела не носит характера кратковременного удара, а продолжается непрерывно миллиарды лет.

В теории Ньютона масса является источником поля тяготения. Мы находимся в поле тяготения Земли. В то же время мы также являемся источниками поля тяготения, но в силу того, что наша масса существенно меньше массы Земли, наше поле намного слабее и окружающие предметы на него не реагируют.

Необыкновенное свойство гравитационных сил, как мы уже говорили, объясняется тем, что эти силы пропорциональны массам обоих взаимодействующих тел. Масса тела, которая входит во второй закон Ньютона, определяет инертные свойства тела, т. е. его способность приобретать определённое ускорение под действием данной силы. Это инертная масса m и.

Казалось бы, какое отношение она может иметь к способности тел притягивать друг друга? Масса, определяющая способность тел притягиваться друг к другу, - гравитационная масса m r .

Из механики Ньютона совсем не следует, что инертная и гравитационная массы одинаковы, т. е. что

m и = m r . (3.5)

Равенство (3.5) является непосредственным следствием из опыта. Оно означает, что можно говорить просто о массе тела как о количественной мере как инертных, так и гравитационных его свойств.

Понравилась статья? Поделитесь ей
Наверх