Регуляция содержания питательных веществ в организме. Лекция: Регуляция обмена веществ и энергии

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Регуляция обмена веществ осуществляется нервным и гуморальным путем. Интенсивность обмена веществ регулируется трофическими влияниями, которые осуществляются симпатическими и парасимпатическими нервами. Симпатические нервы повышают уровень обмена веществ в тканях, парасимпатические – понижают.

Обмен веществ регулируется нейронами гипоталамуса. Раздражение или разрушение нейронов этих ядер приводит к различным изменениям обмена веществ и энергии. Гипоталамус функционально тесно связан с корой головного мозга. Можно выработать условный рефлекс на изменение уровня обмена веществ, вызванное мышечной работой, повышением или понижением температуры окружающей среды. Такие условные рефлексы вырабатываются у человека и животных постоянно в естественных условиях жизни. Условнорефлекторные влияния на метаболизм осуществляются через гипоталамус и вегетативную нервную систему. В регуляции обмена веществ принимают участие базальные ганглии и мозжечок.

Нейроны ядер гипоталамуса, участвующие в регуляции обмена веществ, могут изменять свою активность рефлекторно при раздражении соответствующих рецепторных аппаратов, расположенных в самом гипоталамусе. Гипоталамус изменяет деятельность гипофиза, гормоны которого либо непосредственно, либо через другие железы внутренней секреции оказывают влияние на обмен веществ.

Так, гормоны гипофиза стимулирует инкреторную функцию щитовидной железы, коркового слоя надпочечников и половых желез. Соматропный гормон, выделяемый передней долей гипофиза, оказывает влияние на процессы белкового синтеза. Напротив, гормоны коры надпочечников обладают так называемым антианаболическим действием, заключающимся в том, что синтез и интенсивность превращений белков подавляются. Гормоны щитовидной железы – тироксин и трийодтиронин – резко повышает уровень обмена белков.

В регуляции обмена углеводов наиболее важная роль принадлежит гормону поджелудочной железы – инсулину. Этот гормон понижает уровень сахара в крови, так как обеспечивает проникновение глюкозы в клетки, в частности в клетки печени и мышц, где глюкоза откладывается про запас в виде гликогена.

На обмен жиров существенное влияние оказывают половые гормоны. Так, при угасании половых функций, как правило происходит избыточное отложение жиров. Повышение функции передней доли гипофиза способствует выходу жира из его депо.

Регуляция водно-солевого состава осуществляется центром, расположенным в гипоталамусе. В нем синтезируется антидиуретический гормон, который поступает в заднюю долю гипофиза, а затем в кровь. Уменьшение количества воды в организме приводит к возбуждению осморецепторов и как следствие к выходу антидиуретического гормона, что ведет к задержке воды в организме. В регуляции электролитного обмена важную роль играют гормоны коры надпочечника – минералокортикоиды. Они повышают выделение калия, вызывают задержку в организме натрия, увеличивают количество внеклеточной жидкости.

text_fields

text_fields

arrow_upward

В регуляции обмена веществ и энергии выделяют:

1. Регуляцию об­мена организма веществами и энергией с окружающей средой

2. Регуляцию метаболизма в самом организме.

Регуляция обмена организма с окружающей средой питательными веществами рассматривается в .

Вопросы регуляции водно-солевого обмена описаны в .

Регуляция обмена организма с окружающей средой теплом, как конечной формой превращения всех видов энергии, обсуждается в .

Поэтому здесь представлены общие вопросы нейрогуморальной регуляции обмена веществ и энергии в организме и, главным об­разом, регуляция метаболизма целостного организма.

Конечной целью регуляции обмена веществ и энергии является удовлетворение в соответствии с уровнем функциональной актив­ности потребностей целостного организма, его органов, тканей и отдельных клеток в энергии и разнообразных пластических веще­ствах. В целостном организме постоянно существует необходимость согласования общих метаболических потребностей организма с по­требностями клетки органа, ткани. Такое согласование достигается посредством распределения между органами и тканями веществ, поступающих из окружающей среды, и перераспределения между ними веществ, синтезирующихся внутри организма.

Обмен веществ, протекающий внутри организма, не связан пря­мыми способами с окружающей средой . Питательные вещества, прежде чем они смогут вступить в обменные процессы, должны быть получены из пищи в желудочно-кишечном тракте в молеку­лярной форме. Кислород, необходимый для биологического окисле­ния, должен быть выделен в легких из воздуха, доставлен в кровь, связан с гемоглобином и перенесен кровью к тканям. Скелетные мышцы, являясь в организме одним из мощных потребителей энер­гии, также обслуживают обмен веществ и энергии, обеспечивая по­иск, прием и обработку пищи. Непосредственное отношение к об­мену веществ и энергии имеет выделительная система. Таким об­разом, регуляция обмена веществ и энергии - это мультипараметрическая регуляция, включающая в себя регулирующие системы мно­жества функций организма (например, дыхания, кровообращения, выделения, теплообмена и др.).

Гипо­таламус - центр регуляции обмена веществ и энергии

text_fields

text_fields

arrow_upward

Роль центра в регуляции обмена веществ и энергии играет гипо­ таламус . Это обусловлено тем, что в гипоталамусе локализованы нервные ядра и центры, имеющие непосредственное отношение к регуляции голода и насыщения, теплообмена, осморегуляции. В гипоталамусе идентифицированы полисенсорные нейроны, реагиру­ющие сдвигами функциональной активности на изменения концент­рации глюкозы, водородных ионов, температуры тела, осмотического давления, т.е. важнейших гомеостатических констант внутренней среды организма. В ядрах гипоталамуса осуществляется анализ со­стояния внутренней среды организма и формируются управляющие сигналы, которые посредством эфферентных систем приспосаблива­ют ход метаболизма к потребностям организма.

Звенья эфферентной системы регуляции обмена

text_fields

text_fields

arrow_upward

В качестве звеньев эфферентной системы регуляции обмена ис­пользуется симпатический и парасимпатический отделы вегетатив­ной нервной системы . Выделяющиеся их нервными окончаниями медиаторы оказывают прямое или опосредованное вторичными по­средниками влияние на функцию и метаболизм тканей. Под управ­ляющим влиянием гипоталамуса находится и используется в каче­стве эфферентной системы регуляции обмена веществ и энергии - эндокринная система. Гормоны гипоталамуса, гипофиза и других эндокринных желез оказывают прямое влияние на рост, размноже­ние, дифференцировку, развитие и другие функции клеток. Гормоны принимают участие в поддержании в крови необходимого уровня таких веществ, как глюкоза, свободные жировые кислоты, мине­ральные ионы ().

Клетка как важней­шим эффектор, через который можно оказать регулирующее воз­действие на обмен веществ и энергии

text_fields

text_fields

arrow_upward

Обмен веществ (анаболизм и катаболизм), получение запасаемой в макроэргических связях АТФ энергии, выполнение различных ви­дов работ с использованием метаболической энергии - это, как правило, процессы, протекающие внутри клетки . Поэтому важней­шим эффектором, через который можно оказать регулирующее воз­действие на обмен веществ и энергии, является клетка органов и тканей. Регуляция обмена веществ заключается в воздействии на скорость биохимических реакций, протекающих в клетках.

Наиболее частыми эффектами регуляторных воздействий на клетку являются изменения:

1. Каталитической активности ферментов и их концентрации,

2. Сродства фермента и субстрата,

3. Свойств микросреды, в которой функционируют ферменты.

Регуляция активности фер­ментов может осуществляться различными способами . «Тонкая на­стройка» каталитической активности ферментов достигается посред­ством влияния веществ - модуляторов, которыми часто являются сами метаболиты. Этим способом осуществляется регуляция отдель­ных звеньев метаболических превращений. При этом модулятор может оказывать своей воздействие в отдельной или нескольких тканях организма.

Метаболизм клетки в целом невозможен без интеграции многих биохимических превращений и сама возможность его осуществления определяется энергетическим и окислительно-восстановительным потенциалом клетки . Эта общая интеграция метаболизма обеспечи­вается, главным образом, с помощью аденилатов, участвующих в регуляции любых метаболических превращений клетки.

Интеграция обмена белков, жиров и углеводов клетки осущест­вляется посредством общих для них источников энергии . Действи­тельно, при биосинтезе любых простых и сложных органических слоединений, марокмолекул и надмолекулярных структур в качестве общих источников энергии используется АТФ, которая поставляет энергию для процессов фосфорилирования, или НАД-Н, НАДФ-Н, поставляющие энергию для восстановления окислительных соедине­ний. Таким образом, если в клетке осуществлять синтез (анаболизм) определенных веществ, то он может происходить за счет затраты химической энергии одного из общих подвижных источников (АТФ, НАД-Н, НАДФ-Н), которые образуются при катаболизме других веществ (см.рис.10.1).

Рис.10.1. Схема основных функциональных блоков метаболизма клетки

За общий энергетический запас клетки, полученный в ходе ката­болизма и являющийся движущей силой разнообразных превраще­ний, конкурируют все анаболические и другие процессы, протека­ющие с затратой энергии. Так, например, осуществление глюкостатической функции печени, основанной на способности печени син­тезировать глюкозу из лактата и аминокислот (глюконеогенез), несо­вместимо с одновременным синтезом жиров и белков. Глюконеоге­нез сопровождается расщеплением в печени белков и жиров и окис­лением образующихся при этом жирных кислот, что ведет к осво­бождению энергии, необходимой для синтеза АТФ и НАД-Н, в свою очередь требующихся для глюконеогенеза.

Еще одним проявлением интеграции метаболических превращений белков, жиров и углеводов является существование общих предше­ственников и общих промежуточных продуктов обмена веществ . Это - общий фонд углерода, общий промежуточный продукт обме­на ацетил- КоА и другие вещества. Важнейшими конечными путями превращений, связующими метаболические процессы на различных этапах, являются цикл лимонной кислоты и реакции дыхательной цепи, протекающие в митохондриях. Так, цикл лимонной кисло­ты - главный источник СО 2 для последующих реакций глюконеоге­неза, синтеза жирных кислот и мочевины.

Механизм согласования общих метаболических потребностей организма с потребностями клетки

text_fields

text_fields

arrow_upward

Одним из механизмов согласования общих метаболических по­требностей организма с потребностями клетки являются нервные и гормональные влияния на ключевые ферменты .

Характерными осо­бенностями ключевых ферментов являются:

1. положение в начале того метаболического пути, к которому принадлежит фермент;

2. прибли­женность расположения или ассоциированность со своим субстра­том;

3. реагирование не только на действие внутриклеточных регуля­торов метаболизма, но и на внеклеточные нервные и гормональные воздействия.

Примерами ключевых ферментов являются гликогенфосфорилаза, фосфофруктокиназа, липаза. Их роль в процессах регуляции мета­болизма видна, в частности, при подготовке организма к «борьбе или бегству». При повышении в этих условиях в крови уровня адреналина до 10 -9 М он связывается с адренорецепторами плазма­тической мембраны, активирует аденилатциклазу, которая катализи­рует превращение АТФ в циклический АМФ. Последний активирует гликогенфосфорилазу, многократно усиливающую расщепление гли­когена в печени.

Процесс гликогенолиза в мышцах может одновременно активиро­ваться нервной системой и катехоламинами. Этот эффект достига­ется посредством выделения ионов Са ++ , его связывания с кальмодулином, являющимся субъединицей фосфорилазы, которая при этом активируется и приводит к мобилизации гликогена. Нервный меха­низм мобилизации гликогена осуществляется через меньшее число промежуточных этапов, чем гормональный. Этим достигается его быстродействие.

Удовлетворение энергетических потребностей организма посред­ством ускорения внутриклеточных процессов расщепления триглицеридов в жировой клетчатке достигается активацией гормончувствительной липазы. Повышение активности этого фермента (адренали­ном, норадреналином, глюкагоном) приводит к мобилизации сво­бодных жирных кислот, являющихся основным энергетическим суб­стратом окисления в мышцах при выполнении ими интенсивной и длительной работы.

Переход органов и тканей с одного уровня функциональной ак­тивности на другой всегда сопровождается соответствующими изме­нениями их трофики . Например, при рефлекторном сокращении скелетных мышц нервная система осуществляет не только пусковое действие, но и трофическое путем усиления в них местного кро­вотока и интенсивности обмена веществ. Увеличение силы сокра­щений миокарда под влиянием симпатической нервной системы обеспечивается одновременным усилением коронарного кровотока и метаболизма в мышце сердца. О влиянии нервной системы на тро­фику скелетных мышц свидетельствует тот факт, что денервация мышцы приводит к постепенной атрофии мышечных волокон. Важ­нейшее значение в осуществлении трофической функции нервной системы играет ее симпатический отдел. Через симпатоадреналовую систему достигается не только активация обмена веществ и энергии в клетке, но и создаются дополнительные условия для ускорения метаболизма. Норадреналин и адреналин, выброс которых в крово­ток возрастает при возбуждении симпатической нервной системы, вызывают увеличение глубины дыхания, расширяют мускулатуру бронхов, что способствует доставке кислорода в кровь. Адреналин, оказывая положительное инотропное и хронотропное действие на сердце, увеличивает минутный объем крови, повышает систоличес­кое артериальное давление. В результате активации дыхания и кро­вообращения возрастает доставка кислорода к тканям.

Концентрация глюкозы в крови как один из интегральных показателей внутренней среды, отража­ющим обмен в организме углеводов, белков и жиров

text_fields

text_fields

arrow_upward

Одним из интегральных показателей внутренней среды, отража­ющим обмен в организме углеводов, белков и жиров, является концентрация в крови глюкозы . Глюкоза является не только энер­гетическим субстратом, необходимым для синтеза жиров и белков, но и источником их синтеза. В печени происходит новообразование углеводов из жирных кислот и аминокислот.

Нормальное функционирование клеток нервной системы, мышц, для которых глюкоза является важнейшим энергосубстратом, воз­можно при условии, что приток к ним глюкозы обеспечит их энер­гетические потребности. Это достигается при содержании в литре крови у человека в среднем 1 г (0,8-1,2 г) глюкозы (рис. 10.3.).

Рис. 10.3 Система регуляции уровня глюкозы в крови

При снижении содержания глюкозы в литре крови до уровня менее 0,5 г, вызванном голоданием, передозировкой инсулина, име­ет место недостаточность снабжения энергией клеток мозга. Нару­шение их функций проявляется учащением сердцебиения, слабостью и тремором мышц, головокружением, усилением потоотделения, ощущением голода. При дальнейшем снижении концентрации глю­козы в крови указанное состояние, именуемое гипогликемией, может перейти в гипогликемическую кому, характеризующуюся угнетением функций мозга вплоть до потери сознания. Введение в кровь глю­козы, прием сахарозы, инъекция глюкагона предупреждают или ос­лабляют эти проявления гипогликемии.

Кратковременное повышение уровня глюкозы в крови (гипергли­кемия) не представляет угрозы для жизни, но может приводить к повышению осмотического давления крови.

В нормальных условиях во всей крови организма содержится около 5 г глюкозы. При среднесуточном потреблении с пищей взрослым человеком, занимающимся физическим трудом, 430 г углеводов в условиях относительного покоя, тканями ежеминутно потребляется около 0,3 г глюкозы. При этом запасов глюкозы в циркулирующей крови достаточно для питания тканей на 3-5 минут и без ее вос­полнения неминуема гипогликемия. Потребление глюкозы возрастает при физической и психоэмоциональной нагрузках. Так как пери­одический (несколько раз в день) прием углеводов с пищей не обеспечивает постоянного и равномерного притока глюкозы из ки­шечника в кровь, в организме существуют механизмы, восполня­ющие убыль глюкозы из крови в количествах, эквивалентных ее потреблению тканями. Механизмы с другой направленностью дей­ствия обеспечивают в нормальных условиях превращение глюкозы в запасаемую форму - гликоген. При уровне более 1,8 г в литре крови происходит выведение ее из организма с мочой.

Избыток глюкозы, всосавшейся из кишечника в кровь воротной вены, поглощается гепатоцитами. При повышении в них концентрации глюкозы активируется ферменты углеводного обмена печени, превращающие глюкозу в гликоген. В ответ на повышение уровня сахара в крови, протекающей через поджелудочную железу, возрас­тает секреторная активность В -клеток островков Лангерганса. В кровь выделяется большее количество инсулина - единственного гормона, обладающего резким понижающим концентрацию сахара в крови действием. Под влиянием инсулина повышается проница­емость для глюкозы плазматических мембран клеток мышечной жировой тканей. Инсулин активирует в печени и мышцах процессы превращения глюкозы в гликоген, улучшает ее поглощение и усво­ение скелетными, гладкими и сердечной мышцами. Под влиянием инсулина в клетках жировой ткани из глюкозы синтезируются жиры. Одновременно, выделяющийся в больших количествах инсулин тор­мозит распад гликогена печени и глюконеогенез.

Содержание глюкозы в крови оценивается глюкорецепторами пе­реднего гипоталамуса, а также его полисенсорными нейронами. В ответ на повышении уровня глюкозы в крови выше «заданного значения» (>1,2 г/л) повышается активность нейронов гипоталамуса, которые посредством влияния парасимпатической нервной системы на поджелудочную железу усиливают секрецию инсулина.

При понижении уровня глюкозы в крови уменьшается ее погло­щение гепатоцитами. В поджелудочной железе снижается секретор­ная активность В -клеток, уменьшается секреция инсулина. Тормо­зятся процессы превращения глюкозы в гликоген в печени и мыш­цах, уменьшается поглощение и усвоение глюкозы скелетными и гладкими мышцами, жировыми клетками. При участии этих меха­низмов замедляется или предотвращается дальнейшее понижение уровня глюкозы в крови, которое могло бы привести к развитию гипогликемии.

При уменьшении концентрации глюкозы в крови имеет место повышении тонуса симпатической нервной системы. Под ее влия­нием усиливается секреция в мозговом веществе надпочечников адреналина и норадреналина. Адреналин, стимулируя распад глико­гена в печени и мышцах вызывает повышение концентрации сахара в крови. По этому свойству адреналин является наиболее важным антагонистом инсулина среди других гормонов системы регуляции уровня сахара в крови. Например, норадреналин обладает слабовыраженной способностью повышать уровень глюкозы в крови.

Под влиянием симпатической нервной системы стимулируется выработка а-клетками поджелудочной железы глюкагона, который активирует распад гликогена печени, стимулирует глюконеогенез и приводит к повышению уровня глюкозы в крови.

Понижение в крови концентрации глюкозы, являющейся для ор­ганизма одним из наиболее важных энергетических субстратов, вы­зывает развитие стресса. В ответ на снижение уровня сахара крови глюкорецепторные нейроны гипоталамуса через рилизинггормоны стимулируют секрецию гипофизом в кровь гормона роста и адренокортикотропного гормона. Под влиянием гормона роста уменьшается проницаемость клеточных мембран для глюкозы, усиливается глюконеогенез, активируется секреция глюкагона, в результате чего уровень сахара в крови увеличивается. Гормон роста оказывает анаболические эффекты на обмен белков и жиров. Под его влия­нием увеличивается содержание белка, снижается количество экскретируемого азота, увеличивается концентрация в плазме свободных жирных кислот.

Секретируемые под действием адренокортикотропного гормона в коре надпочечников глкжокортикоиды активируют ферменты глюконеогенеза в печени и этим способствуют увеличению содержания сахара в крови. Одновременно под действием глюкокортикоидов уменьшается включение аминокислот в белки и увеличивается ско­рость выведения из организма азота. Глкжокортикоиды повышают эффективность липолиза в жировой ткани и мобилизации в кровь свободных жирных кислот.

Регуляция обмена веществ и энергии в целостном организме находится под контролем нервной системы и ее высших отделов . Об этом свидетельствуют факты условнорефлекторного изменения ин­тенсивности метаболизма у спортсменов в предстартовом состоянии, у рабочих перед началом выполнения тяжелой физической работы, у водолазов перед их погружением в воду. В этих случаях увели­чивается скорость потребления организмом кислорода, возрастает минутный объем дыхания, минутный объем кровотока, усиливается энергообмен.

Развивающееся при снижении в крови содержания глюкозы, сво­бодных жирных кислот, аминокислот чувство голода обусловливает поведенческую реакцию, направленную на поиск и прием пищи и восполнение в организме питательных веществ.

В регуляции обмена веществ и энергии выделяют регуляцию об­мена организма веществами и энергией с окружающей средой и регуляцию метаболизма в самом организме.

Регуляция обмена организма с окружающей средой питательными веществами рассматривается в главе 9.

Вопросы регуляции водно-солевого обмена описаны в главе 12. Регуляция обмена организма с окружающей средой теплом, как конечной формой превращения всех видов энергии, обсуждается в главе 11.

Поэтому здесь представлены общие вопросы нейрогуморальной регуляции обмена веществ и энергии в организме и, главным об­разом, регуляция метаболизма целостного организма.

Конечной целью регуляции обмена веществ и энергии является удовлетворение в соответствии с уровнем функциональной актив­ности потребностей целостного организма, его органов, тканей и отдельных клеток в энергии и разнообразных пластических веще­ствах. В целостном организме постоянно существует необходимость согласования общих метаболических потребностей организма с по­требностями клетки органа, ткани. Такое согласование достигается посредством распределения между органами и тканями веществ, поступающих из окружающей среды, и перераспределения между ними веществ, синтезирующихся внутри организма.

Обмен веществ, протекающий внутри организма, не связан пря­мыми способами с окружающей средой. Питательные вещества,

прежде чем они смогут вступить в обменные процессы, должны быть получены из пищи в желудочно-кишечном тракте в молеку­лярной форме. Кислород, необходимый для биологического окисле­ния, должен быть выделен в легких из воздуха, доставлен в кровь, связан с гемоглобином и перенесен кровью к тканям. Скелетные мышцы, являясь в организме одним из мощных потребителей энер­гии, также обслуживают обмен веществ и энергии, обеспечивая по­иск, прием и обработку пищи. Непосредственное отношение к об­мену веществ и энергии имеет выделительная система. Таким об­разом, регуляция обмена веществ и энергии - это мультипарамет-рическая регуляция, включающая в себя регулирующие системы мно­жества функций организма (например, дыхания, кровообращения, выделения, теплообмена и др.).

Роль центра в регуляции обмена веществ и энергии играет гипо­ таламус. Это обусловлено тем, что в гипоталамусе локализованы нервные ядра и центры, имеющие непосредственное отношение к регуляции голода и насыщения, теплообмена, осморегуляции. В гипоталамусе идентифицированы полисенсорные нейроны, реагиру­ющие сдвигами функциональной активности на изменения концент­рации глюкозы, водородных ионов, температуры тела, осмотического давления, т.е. важнейших гомеостатических констант внутренней среды организма. В ядрах гипоталамуса осуществляется анализ со­стояния внутренней среды организма и формируются управляющие сигналы, которые посредством эфферентных систем приспосаблива­ют ход метаболизма к потребностям организма.

В качестве звеньев эфферентной системы регуляции обмена ис­пользуется симпатический и парасимпатический отделы вегетатив­ной нервной системы. Выделяющиеся их нервными окончаниями медиаторы оказывают прямое или опосредованное вторичными по­средниками влияние на функцию и метаболизм тканей. Под управ­ляющим влиянием гипоталамуса находится и используется в каче­стве эфферентной системы регуляции обмена веществ и энергии - эндокринная система. Гормоны гипоталамуса, гипофиза и других эндокринных желез оказывают прямое влияние на рост, размноже­ние, дифференцировку, развитие и другие функции клеток. Гормоны принимают участие в поддержании в крови необходимого уровня таких веществ, как глюкоза, свободные жировые кислоты, мине­ральные ионы (см. главу 5).

Обмен веществ (анаболизм и катаболизм), получение запасаемой в макроэргических связях АТФ энергии, выполнение различных ви­дов работ с использованием метаболической энергии - это, как правило, процессы, протекающие внутри клетки. Поэтому важней­шим эффектором, через который можно оказать регулирующее воз­действие на обмен веществ и энергии, является клетка органов и тканей. Регуляция обмена веществ заключается в воздействии на скорость биохимических реакций, протекающих в клетках.

Наиболее частыми эффектами регуляторных воздействий на клетку являются изменения: каталитической активности ферментов и их концентрации, сродства фермента и субстрата, свойств микросреды,

в которой функционируют ферменты. Регуляция активности фер­ментов может осуществляться различными способами. "Тонкая на­стройка" каталитической активности ферментов достигается посред­ством влияния веществ - модуляторов, которыми часто являются сами метаболиты. Этим способом осуществляется регуляция отдель­ных звеньев метаболических превращений. При этом модулятор может оказывать своей воздействие в отдельной или нескольких тканях организма.

Метаболизм клетки в целом невозможен без интеграции многих биохимических превращений и сама возможность его осуществления определяется энергетическим и окислительно-восстановительным потенциалом клетки. Эта общая интеграция метаболизма обеспечи­вается, главным образом, с помощью аденилатов, участвующих в регуляции любых метаболических превращений клетки.

Интеграция обмена белков, жиров и углеводов клетки осущест­вляется посредством общих для них источников энергии. Действи­тельно, при биосинтезе любых простых и сложных органических слоединений, марокмолекул и надмолекулярных структур в качестве общих источников энергии используется АТФ, которая поставляет энергию для процессов фосфорилирования, или НАД Н, НАДФ Н, поставляющие энергию для восстановления окислительных соедине­ний. Таким образом, если в клетке осуществлять синтез (анаболизм) определенных веществ, то он может происходить за счет затраты химической энергии одного из общих подвижных источников (АТФ, НАД Н, НАДФ-Н), которые образуются при катаболизме других веществ (см.рис.10.1).

За общий энергетический запас клетки, полученный в ходе ката­болизма и являющийся движущей силой разнообразных превраще­ний, конкурируют все анаболические и другие процессы, протека­ющие с затратой энергии. Так, например, осуществление глюкоста-тической функции печени, основанной на способности печени син­тезировать глюкозу из лактата и аминокислот {глюконеогенез), несо­вместимо с одновременным синтезом жиров и белков. Глюконеоге­нез сопровождается расщеплением в печени белков и жиров и окис­лением образующихся при этом жирных кислот, что ведет к осво­бождению энергии, необходимой для синтеза АТФ и НАД Н, в свою очередь требующихся для глюконеогенеза.

Еще одним проявлением интеграции метаболических превращений белков, жиров и углеводов является существование общих предше­ ственников и общих промежуточных продуктов обмена веществ. Это - общий фонд углерода, общий промежуточный продукт обме­на- ацетил- КоА и другие вещества. Важнейшими конечными путями превращений, связующими метаболические процессы на различных этапах, являются цикл лимонной кислоты и реакции дыхательной цепи, протекающие в митохондриях. Так, цикл лимонной кисло­ты - главный источник СО 2 для последующих реакций глюконеоге­неза, синтеза жирных кислот и мочевины.

Одним из механизмов согласования общих метаболических по­требностей организма с потребностями клетки являются нервные и

гормональные влияния на ключевые ферменты. Характерными осо­бенностями этих ферментов являются: положение в начале того метаболического пути, к которому принадлежит фермент; прибли­женность расположения или ассоциированность со своим субстра­том; реагирование не только на действие внутриклеточных регуля­торов метаболизма, но и на внеклеточные нервные и гормональные воздействия.

Примерами ключевых ферментов являются гликогенфосфорилаза, фосфофруктокиназа, липаза. Их роль в процессах регуляции мета­болизма видна, в частности, при подготовке организма к "борьбе или бегству". При повышении в этих условиях в крови уровня адреналина до 10 -9 М он связывается с адренорецепторами плазма­тической мембраны, активирует аденилатциклазу, которая катализи­рует превращение АТФ в циклический АМФ. Последний активирует гликогенфосфорилазу, многократно усиливающую расщепление гли­когена в печени.

Процесс гликогенолиза в мышцах может одновременно активиро­ваться нервной системой и катехоламинами. Этот эффект достига­ется посредством выделения ионов Са ++ , его связывания с кальмо-дулином, являющимся субъединицей фосфорилазы, которая при этом активируется и приводит к мобилизации гликогена. Нервный меха­низм мобилизации гликогена осуществляется через меньшее число промежуточных этапов, чем гормональный. Этим достигается его быстродействие.

Удовлетворение энергетических потребностей организма посред­ством ускорения внутриклеточных процессов расщепления триглице-ридов в жировой клетчатке достигается активацией гормончувстви-тельной липазы. Повышение активности этого фермента (адренали­ном, норадреналином, глюкагоном) приводит к мобилизации сво­бодных жирных кислот, являющихся основным энергетическим суб­стратом окисления в мышцах при выполнении ими интенсивной и длительной работы.

Переход органов и тканей с одного уровня функциональной ак­тивности на другой всегда сопровождается соответствующими изме­нениями их трофики. Например, при рефлекторном сокращении скелетных мышц нервная система осуществляет не только пусковое действие, но и трофическое путем усиления в них местного кро­вотока и интенсивности обмена веществ. Увеличение силы сокра­щений миокарда под влиянием симпатической нервной системы обеспечивается одновременным усилением коронарного кровотока и метаболизма в мышце сердца. О влиянии нервной системы на тро­фику скелетных мышц свидетельствует тот факт, что денервация мышцы приводит к постепенной атрофии мышечных волокон. Важ­нейшее значение в осуществлении трофической функции нервной системы играет ее симпатический отдел. Через симпато-адреналовую систему достигается не только активация обмена веществ и энергии в клетке, но и создаются дополнительные условия для ускорения метаболизма. Норадреналин и адреналин, выброс которых в крово­ток возрастает при возбуждении симпатической нервной системы,

вызывают увеличение глубины дыхания, расширяют мускулатуру бронхов, что способствует доставке кислорода в кровь. Адреналин, оказывая положительное инотропное и хронотропное действие на сердце, увеличивает минутный объем крови, повышает систоличес­кое артериальное давление. В результате активации дыхания и кро­вообращения возрастает доставка кислорода к тканям.

Одним из интегральных показателей внутренней среды, отража­ющим обмен в организме углеводов, белков и жиров, является концентрация в крови глюкозы. Глюкоза является не только энер­гетическим субстратом, необходимым для синтеза жиров и белков, но и источником их синтеза. В печени происходит новообразование углеводов из жирных кислот и аминокислот.

Нормальное функционирование клеток нервной системы, мышц, для которых глюкоза является важнейшим энергосубстратом, воз­можно при условии, что приток к ним глюкозы обеспечит их энер­гетические потребности. Это достигается при содержании в литре крови у человека в среднем 1 г (0,8-1,2 г) глюкозы (рис. 10.3.).

При снижении содержания глюкозы в литре крови до уровня менее 0,5 г, вызванном голоданием, передозировкой инсулина, име­ет место недостаточность снабжения энергией клеток мозга. Нару­шение их функций проявляется учащением сердцебиения, слабостью и тремором мышц, головокружением, усилением потоотделения, ощущением голода. При дальнейшем снижении концентрации глю­козы в крови указанное состояние, именуемое гипогликемией, может перейти в гипогликемическую кому, характеризующуюся угнетением функций мозга вплоть до потери сознания. Введение в кровь глю­козы, прием сахарозы, инъекция глюкагона предупреждают или ос­лабляют эти проявления гипогликемии.

Кратковременное повышение уровня глюкозы в крови {гипергли­кемия) не представляет угрозы для жизни, но может приводить к повышению осмотического давления крови.

В нормальных условиях во всей крови организма содержится около 5 г глюкозы. При среднесуточном потреблении с пищей взрослым человеком, занимающимся физическим трудом, 430 г углеводов в условиях относительного покоя, тканями ежеминутно потребляется около 0,3 г глюкозы. При этом запасов глюкозы в циркулирующей крови достаточно для питания тканей на 3-5 минут и без ее вос­полнения неминуема гипогликемия. Потребление глюкозы возрастает при физической и психоэмоциональной нагрузках. Так как пери­одический (несколько раз в день) прием углеводов с пищей не обеспечивает постоянного и равномерного притока глюкозы из ки­шечника в кровь, в организме существуют механизмы, восполня­ющие убыль глюкозы из крови в количествах, эквивалентных ее потреблению тканями. Механизмы с другой направленностью дей­ствия обеспечивают в нормальных условиях превращение глюкозы в запасаемую форму - гликоген. При уровне более 1,8 г в литре крови происходит выведение ее из организма с мочой.

Избыток глюкозы, всосавшейся из кишечника в кровь воротной вены, поглощается гепатоцитами. При повышении в них концент-

Рис. 10.3 Система регуляции уровня глюкозы в крови (Пояснения в тексте)

рации глюкозы активируется ферменты углеводного обмена печени, превращающие глюкозу в гликоген. В ответ на повышение уровня сахара в крови, протекающей через поджелудочную железу, возрас­тает секреторная активность В -клеток островков Лангерганса. В кровь выделяется большее количество инсулина - единственного гормона, обладающего резким понижающим концентрацию сахара в крови действием. Под влиянием инсулина повышается проница­емость для глюкозы плазматических мембран клеток мышечной жировой тканей. Инсулин активирует в печени и мышцах процессы превращения глюкозы в гликоген, улучшает ее поглощение и усво­ение скелетными, гладкими и сердечной мышцами. Под влиянием инсулина в клетках жировой ткани из глюкозы синтезируются жиры. Одновременно, выделяющийся в больших количествах инсулин тор­мозит распад гликогена печени и глюконеогенез.

Содержание глюкозы в крови оценивается глюкорецепторами пе­реднего гипоталамуса, а также его полисенсорными нейронами. В ответ на повышении уровня глюкозы в крови выше "заданного значения" (>1,2 г/л) повышается активность нейронов гипоталамуса, которые посредством влияния парасимпатической нервной системы на поджелудочную железу усиливают секрецию инсулина.

При понижении уровня глюкозы в крови уменьшается ее погло­щение гепатоцитами. В поджелудочной железе снижается секретор­ная активность В -клеток, уменьшается секреция инсулина. Тормо­зятся процессы превращения глюкозы в гликоген в печени и мыш­цах, уменьшается поглощение и усвоение глюкозы скелетными и гладкими мышцами, жировыми клетками. При участии этих меха­низмов замедляется или предотвращается дальнейшее понижение уровня глюкозы в крови, которое могло бы привести к развитию гипогликемии.

При уменьшении концентрации глюкозы в крови имеет место повышении тонуса симпатической нервной системы. Под ее влия­нием усиливается секреция в мозговом веществе надпочечников адреналина и норадреналина. Адреналин, стимулируя распад глико­гена в печени и мышцах вызывает повышение концентрации сахара в крови. По этому свойству адреналин является наиболее важным антагонистом инсулина среди других гормонов системы регуляции уровня сахара в крови. Например, норадреналин обладает слабовы-раженной способностью повышать уровень глюкозы в крови.

Под влиянием симпатической нервной системы стимулируется выработка а-клетками поджелудочной железы глюкагона, который активирует распад гликогена печени, стимулирует глюконеогенез и приводит к повышению уровня глюкозы в крови.

Понижение в крови концентрации глюкозы, являющейся для ор­ганизма одним из наиболее важных энергетических субстратов, вы­зывает развитие стресса. В ответ на снижение уровня сахара крови глюкорецепторные нейроны гипоталамуса через рилизинг-гормоны стимулируют секрецию гипофизом в кровь гормона роста и адрено-кортикотропного гормона. Под влиянием гормона роста уменьшается проницаемость клеточных мембран для глюкозы, усиливается глю-

конеогенез, активируется секреция глюкагона, в результате чего уровень сахара в крови увеличивается. Гормон роста оказывает анаболические эффекты на обмен белков и жиров. Под его влия­нием увеличивается содержание белка, снижается количество экс-кретируемого азота, увеличивается концентрация в плазме свободных жирных кислот.

Секретируемые под действием адренокортикотропного гормона в коре надпочечников глкжокортикоиды активируют ферменты глюко-неогенеза в печени и этим способствуют увеличению содержания сахара в крови. Одновременно под действием глкжокортикоидов уменьшается включение аминокислот в белки и увеличивается ско­рость выведения из организма азота. Глкжокортикоиды повышают эффективность липолиза в жировой ткани и мобилизации в кровь свободных жирных кислот.

Регуляция обмена веществ и энергии в целостном организме находится под контролем нервной системы и ее высших отделов. Об этом свидетельствуют факты условнорефлекторного изменения ин­тенсивности метаболизма у спортсменов в предстартовом состоянии, у рабочих перед началом выполнения тяжелой физической работы, у водолазов перед их погружением в воду. В этих случаях увели­чивается скорость потребления организмом кислорода, возрастает минутный объем дыхания, минутный объем кровотока, усиливается энергообмен.

Развивающееся при снижении в крови содержания глюкозы, сво­бодных жирных кислот, аминокислот чувство голода обусловливает поведенческую реакцию, направленную на поиск и прием пищи и восполнение в организме питательных веществ.

Веществ и энергии, или метаболизм – физиологические процессы обеспечения организма необходимыми для его нормального функционирования соединениями, их превращение, получение энергии и выведения во внешнюю среду ненужных соединений произошедших реакций.

В узком смысле, метаболизм – это пути превращений определенного соединения или соединений в организме.

Метаболизм состоит из двух процессов:

  • Пластический обмен , анаболизм, ассимиляция, или синтез. Это поступление в организм через пищеварительную систему воды, белков, жиров, углеводов, минеральных солей, витаминов, через дыхательную систему, кожу - кислорода для построения мембран, клеточных структур и их обновления. Анаболические реакции – это реакции, участвующие в синтезе новых молекул, протекают с поглощением энергии.
  • Энергетический обмен , катаболизм, диссимиляция, или распад. Это процессы выведения из организма отработанных продуктов, осуществляется через органы пищеварительного тракта, легкие, почки, кожу. Катаболические реакции – это реакции распада, протекающие с выделением энергии. Во время процессов энергетического обмена часть энергии рассеивается в виде тепла, а часть запасается в определенных органических веществах в виде макроэргических связей. Универсальным химическим аккумулятором энергии является АТФ – аденозинтрифосфорная кислота.

Все реакции анаболизма и катаболизма протекают с помощью энзимов (ферментов) – биологических катализаторов.

В процессе обмена веществ постоянно образуются, обновляются, расщепляются клеточные структуры, появляются и разрушаются разнообразные химические соединения. Все это сопровождается превращениями энергии: потенциальная энергия веществ, освобождаемая при расщеплении, переходит в кинетическую энергию, представленную, главным образом тепловой и механической энергиями, частично – электрической энергией.

Поступление в организм различных веществ из внешней среды необходимо для:

  1. Возмещения энергозатрат.
  2. Удовлетворения потребностей роста
  3. Сохранения массы тела.

При этом количество питательных веществ, их соотношение и свойства должны согласовываться с условиями жизни и общим состоянием организма.

Все реакции пластического и энергетического обмена протекают совместно, переходя друг в друга в организме в течение всей жизни. В раннем возрасте преобладают реакции анаболизма, когда наблюдается интенсивный рост и развитие организма. По мере старения в организме начинают преобладать процессы катаболизма, синтез новых веществ постепенно угнетается.

Виды обмена веществ

Основными веществами, поступающими в организм человека, являются вода, минеральные соли, органические вещества: белки, витамины, углеводы и жиры. Для каждого вещества характерен свой путь метаболизма.

Существуют следующие виды обмена веществ:

  • обмен воды и минеральных солей;
  • обмен белков;
  • обмен жиров;
  • обмен углеводов.

Замечание 1

Большинство витаминов входят в состав ферментов, поэтому они выполняют в основном функцию катализаторов биохимических процессов.

Регуляция обмена веществ

Под регуляцией обмена веществ рассматривается регуляция почти всех функций организма: пищеварения, кровообращения, дыхания, выделения и др.

Основную роль в регуляции обмена веществ играет эндокринная система. Гормоны оказывают воздействие на скорость протекания биохимических процессов непосредственно в клетке. При совокупном их воздействии на отдельные клетки происходит изменение в функционировании организма в целом. К примеру,

  • гормон гипофиза - соматотропный гормон проявляет выраженное анаболическое действие, он повышает синтез пластических веществ, ускоряет рост;
  • катехоламины надпочечников усиливают энергообразование через окислительные процессы;
  • тироксин и трийодтиронин – гормоны щитовидной железы – активируют разрушение углеводов и жиров, стимулируют образование белка из аминокислот.

В регуляции обмена веществ принимает участие нервная система – гипоталамус, который включает центры жажды, голода и насыщения, терморегуляции. Регуляция осуществляется через вегетативную нервную систему.

Замечание 2

Гипоталамус и гипофиз координируют функционирование почти всех желез внутренней секреции.

Обмен веществ и энергии подразумевает комплекс непростых биохимических реакций, разобраться в которых обычному человеку бывает довольно сложно. Данная статья поможет понять, какие процессы происходят в организме с необходимыми соединениями, которые мы потребляем с едой и что влияет на наш метаболизм.

Энергообмен и метаболизм протекают по общей схеме:

  • поступление веществ в организм, его преобразование и абсорбция;
  • применение в организме;
  • выведение или запасание излишков.

Все процессы метаболизма разделяются на 2 типа:

  1. Ассимиляция (пластический обмен, анаболизм) – образование специфичных для организма соединений из поступивших в него веществ.
  2. Диссимиляция – процессы разложения сложных органических соединений до более простых, из которых потом будут образованы новые, особенные вещества. Реакции диссимиляции проходят с высвобождением энергии, поэтому совокупность такого вида процессов называют также энергообменом или катаболизмом.

Данные процессы противоположны друг другу, но тесно связаны между собой. Они протекают непрерывно, обеспечивая нормальную жизнедеятельность. За регуляцию обмена веществ и энергии отвечает нервная система. Главным отделом ЦНС, управляющим всеми типами метаболизма, является гипоталамус.

Основные виды

В зависимости от форм соединений, которые подвергаются трансформации в организме, выделяют несколько видов обмена. Каждый из них имеет свою специфику.

Белки

Белки или пептиды – полимеры, образованные аминокислотами.

Выполняют множество жизненно важных функций:

  • структурная (присутствуют в структуре клеток тканей, составляющих организм человека);
  • ферментативная (ферменты – это белки, участвующие практически во всех биохимических процессах);
  • двигательная (взаимодействие пептидов актина и миозина обеспечивает все движения);
  • энергетическая (разлагаются, высвобождая энергию);
  • защитная (белки – иммуноглобулины участвуют в формировании иммунитета);
  • участвуют в регуляции водно-солевого баланса;
  • транспортная (обеспечивают доставку газов, биологически активных веществ, лекарственных средств и др.).

Попав в организм с продуктами питания, белки распадаются до аминокислот, из которых затем синтезируются новые, свойственные данному организму пептиды. При малом поступлении белков с продуктами питания, 10 из 20 необходимых аминокислот могут вырабатываться организмом, остальные же являются незаменимыми.

Этапы белкового метаболизма:

  • поступление белков с пищей;
  • распад пептидов до аминокислот в ЖКТ;
  • перемещение последних в печень;
  • распределение аминокислот в тканях;
  • биосинтез специфичных пептидов;
  • выведение из организма неиспользованных аминокислот в виде солей.

Жиры

К видам обмена веществ и энергии в организме человека относится и метаболизм жиров. Жиры — соединения глицерина и жирных кислот. Долгое время считалось, что их употребление не обязательно для полноценной работы организма. Однако определенные типы таких веществ содержат значимые противосклеротические составляющие.

Жиры, будучи важным источником энергии, помогают сохранить в организме белки, которые начинают использоваться для ее получения при нехватке углеводов и липидов. Жиры обязательны для усвоения витаминов А, Е, D. Также липиды содержатся в цитоплазме и клеточной стенке.

Биологическая ценность жиров определяется типом жирных кислот, которыми они были образованы. Эти кислоты могут иметь два вида:

  1. Насыщенные, не имеющие в своей структуре двойных связей, считаются наиболее вредными, так как чрезмерное употребление продуктов с большим содержанием данного вида кислот может стать причиной атеросклероза, ожирения и прочих заболеваний. Присутствуют в сливочном масле, сливках, молоке, жирном мясе.
  2. Ненасыщенные - полезные для организма. К ним относятся Омега -3, -6 и -9 кислоты. Способствуют укреплению иммунитета, восстановлению гормонального фона, предупреждают отложение холестерина, улучшают внешний вид кожи, ногтей и волос. Источники подобных соединений - масла разных растений и рыбий жир.

Этапы обмена липидов:

  • поступление жиров в организм;
  • распад в ЖКТ до глицерина и жирных кислот;
  • образование липопротеидов в печени и тонком кишечнике;
  • транспорт липопротеидов в ткани;
  • образование специфических липидов клеток.

Жировые излишки откладываются под кожей или вокруг внутренних органов.

Углеводы

Углеводы или сахара - главный источник энергии в организме.

Процессы обмена углеводов:

  • преобразование углеводов в ЖКТ в простые сахара, которые затем всасываются;
  • превращение глюкозы в гликоген, его накопление в печени и мышцах либо использование для выработки энергии;
  • преобразование гликогена в глюкозу печенью в случае падения уровня сахара в крови;
  • создание глюкозы из неуглеводных компонентов;
  • превращение глюкозы в жирные кислоты;
  • кислородное разложение глюкозы до углекислого газа и воды.

В случае чрезмерного употребления пищи, богатой глюкозой, углевод преобразуется в липиды. Они откладываются под кожей и могут быть использованы для дальнейшей трансформации энергии в клетках.

Значение воды и минеральных солей

Водно-солевой обмен – комплекс процессов поступления, применения и выведения воды и минералов. Большая часть жидкости поступает в организм извне. И также она в малых объемах выделяется в организме в ходе разложения питательных веществ.

Функции воды в организме:

  • структурная (необходимый компонент всех тканей);
  • растворение и транспорт веществ;
  • обеспечение многих биохимических реакций;
  • обязательный компонент биологических жидкостей;
  • обеспечивает постоянство водно-солевого баланса, участвует в терморегуляции.

Из организма жидкость выводится с помощью легких, потовых желез, мочевыделительной системы и кишечника.

Минеральные соли, получаемые с пищей, можно разделить на макро- и микроэлементы. К первым относят минералы, содержащиеся в значительных количествах - магний, кальций, натрий, фосфор и прочие. Микроэлементы нужны организму в очень малом объеме. К ним относятся железо, марганец, цинк, йод и другие элементы.

Нехватка минералов может негативно сказаться на деятельности различных систем организма. Так, при дефиците магния и калия наблюдаются сбои в работе ЦНС, мышц (в том числе и миокарда). Недостаток кальция и фосфора может сказаться на прочности костей, а нехватка йода - на функции щитовидной железы. Нарушения водно-солевого баланса способно стать причиной мочекаменной болезни.

Витамины

Витамины – большая группа простых соединений, необходимых для полноценной работы всех систем организма.

Витамины делятся на 2 группы:

  • водорастворимые (витамины группы В, витамин С и РР), не накапливающиеся в организме;
  • жирорастворимые (А, D, Е), имеющие подобное свойство накопления.

Определенные соединения (витамин В12, фолиевая кислота) вырабатываются кишечной микрофлорой. Многие витамины являются частью различных ферментов, без которых невозможно осуществление биохимических процессов.

Этапы обмена витаминов:

  • поступление с пищей;
  • перемещение к месту накопления или утилизации;
  • преобразование в кофермент (составляющее фермента небелкового происхождения);
  • соединение кофермента и апофермента (белковой части фермента).

При нехватке какого-либо витамина развивается гиповитаминоз, при избытке – гипервитаминоз.

Обмен энергии

Энергетический обмен (катаболизм) – комплекс реакций распада сложных питательных веществ до более простых с выходом энергии, без которой невозможны рост и развитие, движение и другие проявления жизнедеятельности. Полученная энергия накапливается в форме АТФ (универсальный энергетический источник в живых организмах), который содержится во всех клетках.

Количество энергии, высвобождаемой после употребления продукта питания, называется его энергетической ценностью. Измеряется этот показатель в килокалориях (ккал).

Энергообмен проходит в несколько этапов:

  1. Подготовительный. Подразумевает распад сложных питательных веществ в ЖКТ до более простых.
  2. Бескислородное брожение — трансформация глюкозы без участия кислорода. Процесс протекает в цитоплазме клеток. Конечными продуктами этапа являются 2 молекулы АТФ, вода и пировиноградная кислота.
  3. Кислородный или аэробный этап. Проходит в митохондриях (специальных органоидах клеток), при этом пировиноградная кислота распадается с участием кислорода, образуя 36 молекул АТФ.

Терморегуляция

Терморегуляцией называют способность живого организма поддерживать постоянную температуру тела, которая является важным показателем теплового обмена. Чтобы этот показатель был стабильным, должно соблюдаться равенство между теплоотдачей и теплопродукцией.

Теплопродукция -выделение тепла в организме. Его источником служат ткани, в которых протекают реакции с высвобождением энергии. Так, важную роль в терморегуляции играет печень, ведь в ней осуществляется множество биохимических процессов.

Теплоотдача или физическая регуляция может проходить по трем путям:

  • теплопроведение – отдача тепла окружающей среде и предметам, соприкасающимся с кожей;
  • теплоизлучение – отдача тепла воздуху и окружающим предметам путем излучения инфракрасных (тепловых) лучей;
  • испарение – отдача тепла с помощью улетучивания влаги с потом или в процессе дыхания.

Что влияет на процесс метаболизма

Обмен веществ каждого конкретного организма имеет свои особенности. Скорость метаболизма определяется несколькими факторами:

  • половая принадлежность (обычно у мужчин процессы метаболизма протекают несколько быстрее, чем у женщин);
  • генетический фактор;
  • доля мышечной массы (людям, обладающим развитой мускулатурой требуется больше энергии для работы мышц, поэтому происходящие процессы будут протекать быстрее);
  • возраст (с годами скорость обмена веществ снижается);
  • гормональный фон.

Огромное влияние на процесс метаболизма оказывает питание. Здесь важен и рацион, и режим приема пищи. Для правильной работы организма нужно оптимальное количество употребляемых белков, жиров, углеводов, витаминов, минералов и жидкости. Важно помнить, что принимать пищу лучше понемногу, но часто, так как большие перерывы между трапезами способствуют замедлению обмена веществ, а значит, могут привести к ожирению.

Понравилась статья? Поделитесь ей
Наверх