Цветовая модель HSB. Эта цветовая модель является наиболее простой для понимания

Сечения пространства по яркости. Видимая часть пространства HSB.

Для описания цветовой модели HSB необходимо уточнить определения таких характеристик цвета, как цветность, насыщенность и яркость.
Цветность (цветовой тон) или хроматика - числовая характеристика, имеющая одинаковое значение для всех оттенков одного цвета (например, ярко-красный или тёмно-красный) и различные значения для любой пары оттенков разных цветов (например, ярко-красный и ярко-синий). Определяет расположение цвета на цветовом круге в градусах. Цветность обозначают первой буквой слова hue (оттенок) - H. Цвета с различной цветностью описывают названиями на естественном языке (например, голубой, оранжевый). Например, зеленому цвету соответствует значение Н120°, а синему - Н240°.
Насыщенность - это интенсивность определённого тона. Насыщенный цвет можно назвать сочным, глубоким, в то время как, менее насыщенный - приглушённым, приближённым к серому. Полностью ненасыщенный цвет будет оттенком серого. Насыщенность 50 означает, что мы имеем дело с 50 %-ным оттенком спектрального цвета. Насыщенность обозначают первой буквой слова saturation (насыщенность) - S. На цветовом круге цвета равной насыщенности располагаются вдоль концентрических окружностей, а все степени насыщенности одного цвета можно проследить вдоль радиуса, соединяющего белую точку в центре и точку спектрального цвета на окружности.
Яркость - это энергетическая характеристика света, визуально воспринимаемая как величина, на которую цвет отличается от черного. Яркость обозначают первой буквой слова brightness (яркость) - B. Яркость измеряется в процентах. Получается, что В=0 % соответствует черному цвету, В=100 % - отсутствию добавленного черного. На цветовом круге цвета равной яркости располагаются вдоль концентрических окружностей, а все степени яркости одного цвета можно проследить по радиусу, соединяющему черную точку в центре и точку спектрального цвета на окружности.
На основе этих параметров построена цветовая модель HSB. Основа модели цветовой круг. Исходя из этого, цветовое пространство модели HSB можно рассматривать как "стопку" лежащих друг на друге модификаций цветового круга. "Нижний" цветовой круг с яркостью цветов В=0 % визуально воспринимается как черный. "Верхний" цветовой круг составляют цвета с максимальной яркостью B=100 %. Ось S (насыщенность) модели HSB не имеет фиксированного направления. Значения этой переменной - расстояние от центра цветового круга до точки, соответствующей заданному цвету.
Перед выводом на экран цвета приходится преобразовывать в цветовое пространство , а перед выводом на печать - в цветовое пространство . Второй существенный недостаток этой модели состоит в нелинейности визуального восприятия яркости. В силу физиологических особенностей зрения, хроматические цвета с одинаковым значением яркости (например, желтый и фиолетовый) не выглядят одинаково светлыми. Для устранения этого недостатка была введена искусственная характеристика цвета - светлота (lightness). Светлотой называется характеристика визуального восприятия яркости цвета. Цвета с равными значениями светлоты выглядят одинаково яркими. Модификация цветовой модели HSB с заменой яркости на светлоту называется HSL. В некоторых программах компьютерной графики и в литературе встречается упоминание о цветовой модели HSV. В разных случаях эта аббревиатура соответствует либо модели HSB, либо модели HSL, либо представляет собой их собирательное наименование.

Мы воспринимаем окружающий мир с помощью различных факторов, один из которых — это цвет. Открывает человек глаза и видит разные цвета, а если нужно об этих цветах рассказать другому человеку, то можно сказать что-то вроде «штаны у него как спелый лимон» или «глаза у нее как ясное небо» и человеку в принципе понятно какого цвета штаны и глаза, даже если он их не видит.

То есть передать информацию о цвете от человека человеку, никакого труда не составляет. А если цветовой информацией должны оперировать не люди, а какие-нибудь технические устройства, тут вариант «глаза как ясное небо» не пойдет. Нужно какое-то иное описание цвета, понятное этим устройствам (мониторы, принтеры, фотоаппараты и т. д.). Как раз для этого и нужны цветовые модели.

Типы цветовых моделей

Существует немало цветовых моделей, наиболее часто используемые можно разделить на три группы:

  • аппаратно-зависимые — цветовые модели данной группы описываю цвет применительно к конкретному, цветовоспроизводящему устройству (например монитору), - RGB, CMYK
  • аппаратно-независимые — эта группа цветовых моделей для того, чтобы дать однозначную информацию о цвете - XYZ, Lab
  • психологические — эти модели основываются на особенностях восприятия человека - HSB, HSV, HSL

Рассмотрим по отдельности некоторые, часто используемые, цветовые модели.

Данная цветовая модель описывает цвет источника света (сюда можно отнести например экран монитора или телевизора). Из огромного множества цветов, в качестве основных (первичных) было выделено три цвета: красный (B ed), зеленый (G reen), синий (B lue). Первые буквы названий основных цветов образовали название цветовой модели RGB.

Когда смешиваются два основных цвета, получившийся цвет осветляется: красный и зеленый дают желтый, зеленый и синий дают голубой, из синего и красного получится пурпурный. Если смешать все три основных цвета, образуется белый. Такие цвета называют­ся аддитивными.

Эту модель можно представить в виде трехмерной системы координат, где каждая отражает значение одного из основных цветов в диапазоне от нуля до максимума. Получился куб, внутри которого находятся все цвета, образующие цветовое пространство RGB.

Важные точки и линии модели RGB

  • Начало координат: в этой точке значения всех основных цветов равны нулю, излучение отсутствует, т. е. это - точка черного цвета.
  • В ближайшей к зрителю точке все составляющие имеют мак­симальное значение, это значит максимальное свечение - точка белого цвета.
  • На линии, соединяющей эти точки (по диагонали куба), расположены оттенки серого цвета: от черного к белому. Этот диапазон иначе называют серой шкалой (Grayscale).
  • Три вершины куба дают чистые исходные цвета, остальные три отражают двойные смешения исходных цветов.

Плюс этой модели состоит в том, что она описывает все 16 миллионов цветов, а минус в том, что при печати часть (самые яркие и насыщенные) этих цветов потеряется.

Так как RGB аппаратно-завиисмая модель, то одна и та же картинка на разных мониторах может отличаться по цвету, например потому что экраны этих мониторов сделаны по разным технологиям или мониторы по разному настроены.

Если предыдущая модель описывает светящиеся цвета, то CMYK наоборот, для описания цветов отраженных. Еще они называются субтрактивными («вычитательными»), потому что они остаются после вычи­тания основных аддитивных. Так как цветов для вычитания у нас три, то и основных субтрактивных цветов тоже будет три: голубой (C yan), пурпурный (M agenta), желтый (Y ellow).

Три основных цвета модели CMYK, называют полиграфической триадой. Печатая этими красками, происходит поглощение красной, зеленой и синей составляющих. В изображении CMYK каждый пиксель имеет значение процентного содержания триадных красок.

Когда смешиваем две субтрактивных краски, то результирующий цвет затемняется, а если смешать три, то должен получиться черный цвет. При нулевом значении всех красок получаем белый цвет. А когда значения всех составляющих равны - получаем серый цвет.

На деле получается, что если смешать три краски при максимальных значениях, вместо глубокого черного цвета у нас получится скорее грязный темно-коричневый. Это происходит потому, что полиграфические краски не идеальны и не могут отразить весь цветовой диапазон.

Что бы компенсировать эту проблему к этой триаде добавили четвертую краску черного цвета, она и добавила последнюю букву в названии цветовой модели С - C yan (Голубой), М - M agenta (Пурпурный), Y - Y ellow (Желтый), К - blacK (Черный). Все краски обычно обозначаются начальной буквой названия, но черную обозначили последней буквой, Почему? .

Как и RGB, CMYK тоже модель аппаратно-зависимая. Зависит конечный результат от краски, от типа бумаги, от печатной машины, от особенностей технологии печати. Поэтому одно и то же изображение в разных типографиях может быть напечатанным по разному.

Цветовая модель HSB

Если вышеописанные модели соединить в одну, то результат можно изобразить в виде цветового круга, где основные цвета моделей RGB и CMY расположены в следующей зависимости: каждый цвет находится напротив комплементарного цвета, его дополняющего и между цветами, с по­мощью которых он образован.

Чтобы усилить какой-то цвет, нужно ослабить цвет находящийся напротив (дополняющий). Например, чтобы усилить желтый, нужно ослабить синий.

Для описания цвета в данной модели есть три параметра H ue (оттенок) - показывает положение цвета на цветовом круге и обозначается величиной угла от 0 до 360 градусов, S aturation (насыщенность) - определяет чистоту цвета (уменьшение насыщенности похоже на добавлене белого цвета в исходный цвет), B rightness (яркость) - показывает освещенность или затененность цвета (уменьшение яркости похоже на добавление черной краски). Первые буквы в названии этих параметров и дали название цветовой модели.

Модель HSB хорошо согласуется с человеческим восприятием: цветовой тон - длина волны света, насыщенность - интенсивность волны, а яркость - количество света.

Минусом модели HSB является необходимость конвертировать ее в RGB для отображения на экране монитора или в CMYK для печати.

Эту модель создала Международная комиссия по освещению для того, чтобы уйти от недостатков предыдущих моделей. Было необходимо создать аппаратно независимую модель для определения цвета независящую от параметров устройства.

В модели Lab цвет представлен тремя параметрами:

  • L — светлота
  • a — хроматический компонент в диапазоне от зеленого до красного
  • b — хроматический компонент в диапазоне от синего до желтого

При переводе цвета из какой-нибудь модели в Lab, все цвета сохраняются, так как пространство Lab самое большое. Поэтому данное пространство используют как посредника при конвертации цвета из одной модели в другую.

Цветовая модель Grayscale

Самое простое и понятное пространство используется для отображения черно-белого изображения. Цвет в данной модели описывается всего одним параметром. Значение параметра может быть в градациях (от 0 до 256) или в процентах (от 0% до 100%). Минимальное значение соответствует белому цвету, а максимальное — черному.

Индексные цвета

Вряд ли допечатнику придется работать с индексными цветами, но знать что это такое, не помешает.

Итак, когда-то давно, на заре компьютерных технологий, компьютеры могли отображать на экране не больше 256 цветов одновременно, а до этого 64 и 16 цветов. Исходя из таких условий был придуман индексный способ кодирования цвета. Каждый цвет, содержащийся в изображении, получил порядковый номер, с помощью этого номера описывался цвет всех пикселов, имеющих соответствующий цвет. Но у разных изображение наборы цветов разные и по этому пришлось в каждой картинке хранить свой набор цветов (набор цветов назвали — цветовая таблица).

Современные компьютеры (даже самые простые) способны отображать на экране 16,8 млн цветов, поэтому нет особой необходимости в использовании индексных цветов. Но с развитием интернета эта модель вновь используется. Все потому, что такой файл может иметь гораздо меньший размер.

Достоинства и ограничения HSB-модели

Модель HSB в отличие от моделей RGB и CMYK носит абстрактный характер. Отчасти это связано с тем, что цветовой тон и насыщенность цвета нельзя изме­рить непосредственно. Любая форма ввода цветовой информации всегда начина­ется с определения красной, зеленой и синей составляющих, на базе которых за­тем с помощью математического пересчета получают компоненты HSB-модели. В результате эта цветовая модель имеет то же цветовое пространство, что и RGB-модель, а значит, и присущий ей недостаток - ограниченное цветовое простран­ство.

Вместе с тем HSB-модель обладает по сравнению с RGB- и CMYK-моделями дву­мя важными преимуществами:

Аппаратной независимостью. Задание составляющих этой модели в виде зна­чений цветового тона, насыщенности и яркости позволяют однозначно опреде­лить цвет без необходимости учета параметров устройства вывода.

Более простым и интуитивно понятным механизмом управления цветом.

Это связано с тем, что цветовой тон, насыщенность и яркость представляют собой независимые характеристики цвета. Например, чистый красный цвет расположен на цветовом круге под углом 0°. Если нужно сместить красный тон к оранжевому тону, то следует лишь несколько увеличить угол, определяющий цветовой тон. Для получения более блеклого цвета достаточно лишь снизить насыщенность, а для придания ему большей яркости соответственно увеличить значение яркости. По­лучение таких эффектов с помощью RGB-модели практически невозможно, поскольку значения ее цветовых компонентов очень сильно зависят друг от друга. Поэтому при изменении одной из ее составляющих, например красной, это окажет влияние не только на цветовой тон, но одновременно и на насыщенность и яр­кость.

5.4.4 Системы соответствия цветов и палитры

Как уже отмечалось ранее при рассмотрении цветовых моделей, каждая из них характеризуется собственным цветовым охватом. Это приводит к тому, что часть цветов, используемых в технологии многослойной печати, не может быть точно отображена на экране монитора. Кроме того, на воспроизведение цвета на экране монитора влияет множество других факторов: условия освещенности, срок экс­плуатации, точность его настройки. Поэтому нельзя выбирать нужный нам цвет непосредственно на экране дисплея.

С целью повышения точности воспроизведения цвета на этапе печати в современ­ные графические программы включены системы сопоставления цветов и палит­ры, которые предоставляют в ваше распоряжение еще один способ назначения

Доброго времени суток, дорогие читатели, знакомые, посетители, мимопроходящие личности и прочие странные существа! Сегодня мы поговорим о немного специфической, но несомненно важной вещи для любого пользователя, а именно о такой штуке: представление цвета в компьютере.

Как ни крути, но рано или поздно все столкнутся с практической необходимостью понимания, что такое цветовая модель, да и просто сие знание полезно с точки зрения расширения кругозора и осознания - что и как работает в компьютере и из чего он состоит как с программной, так и с физической точки зрения.

Что такое цветовая модель

В общем виде цветовая модель - это некоторая абстрактная вещь, в которой цвет представляется в виде совокупности чисел. И каждая такая модель имеет свои особенности и недостатки. По сути, это как с языком, например, если цвет - это слово "дом", то на разных языках оно будет писаться и звучать по-разному, но при этом смысл слова везде будет одинаковый. Так же и с цветом.

Мы рассмотрим самые основные модели. Их 5 . Как правило, используется одновременно несколько различных моделей, т.к. некоторые удобнее всего использовать в визуальном виде, а другие в численном.

RGB

Это самая распространенная модель представления цвета. В ней любой цвет рассматривается как оттенки трех основных (или базовых) цветов: красный (Red) , зеленый (Green) и синий (Blue). При этом существует два вида этой модели: восьмибитное представление, где цвет задается числами от 0 до 255 (например, цвет будет соответствовать синему, а - желтому), и шестнадцатибитное , которое чаще всего используется в графических редакторах и html , где цвет задается числами от 0 до ff (зеленый - #00ff00 , синий - #0000ff , желтый - #ffff00 ).

Разница представлений в том, что в восьмибитном виде для каждого базового цвета используется отдельная шкала, а в шестнадцатибитном уже сразу вводится цвет. Иными словами, восьмибитное представление - три шкалы с каждым основным цветов, шестнадцатибитное - одна шкала с тремя цветами.

Особенность этой модели в том, что здесь новый цвет получается путем добавления оттенков основных цветов, т.е. "смешивания".

Хотите знать и уметь, больше и сами?

Мы предлагаем Вам обучение по направлениям: компьютеры, программы, администрирование, сервера, сети, сайтостроение, SEO и другое. Узнайте подробности сейчас!

На картинке выше видно, как цвета смешиваются друг с другом, образуя новые цвета (желтый - [255,255,0 ], пурпурный - [255,0,255 ], голубой - [0,255,255 ] и белый [255,255,255 ]).

При этом эта модель чаще всего используется именно в численном виде, а не в визуальном (когда цвет задается вводом его значения в соотв. поля, а не выбирается мышкой). Для визуальной настройки цвета используются другие модели. Потому что визуально модель RGB представляет собой трехмерный кубик, который, как Вы видите на картинке выше, не очень удобно использовать:)

Так что это самая распространенная модель у веб-дизайнеров (передаем пламенный привет css ) и программистов.

Недостаток этой модели в том, что она зависит от аппаратной части, иными словами, одна и та же картинка будет неодинаково выглядеть на разных мониторах (ибо в мониторах используется так называемый люминофор - вещество, которое преобразовывает поглощаемую им энергию в световое излучение, а посему в зависимости от качества этого вещества будут определяться базовые цвета) .

CMYK

Это тоже очень распространенная модель, но многие о ней могли вообще ничего не слышать:)

А всё из-за того, что она используется исключительно для печати. Она расшифровывается как Cyan, Magenta, Yellow, Black (или Key Color ), т.е. Голубой, Пурпурный, Желтый и Черный (или ключевой цвет ).

Использование этой модели на печати обусловлено тем, что смешивать по три оттенка для каждого нового цвета слишком затратно и грязно, т.к. когда на бумагу сначала наносится один цвет, потом поверх него другой и затем поверх них третий цвет, во-первых, бумага сильно намокает (если струйная печать), во-вторых, совсем не факт, что получится именно тот оттенок, что Вы хотели. Да, физика она такая:)

Наиболее внимательные могли заметить, что на картинке присутствуют три цвета, а черный получается путем смешивания этих трех. Так, стало быть, зачем его вынесли отдельно? Опять же причина в том, что, во-первых, смешивать три цвета это затратно с точки зрения использования тонера (спец. порошок для картриджа от принтера, который используется вместо чернил в лазерных принтерах), во-вторых, бумага сильно мокнет, что увеличивает время просушки, в-третьих, цвета в действительности могут не смешаться должным образом, а быть более блеклыми, например. Картинка ниже показывает эту модель в реальности

Таким образом, получится скорее не черный, а грязно-серый или грязно-коричневый.

Поэтому (и не только) ввели еще черный цвет, чтобы не пачкать бумагу, не тратиться на тонеры и вообще жить было проще:)

Очень наглядно иллюстрирует всю суть следующая анимация (открывается по клику, вес около 14 Mb ):

Цвет в этой модели задается числами от 0 до 100 , где эти числа часто называют "частями" или "порциями" выбранного цвета. Например, цвет "хаки" получается путем смешивания 30 частей голубой краски, 45 - пурпурной, 80 - желтой и 5 - черной, т.е. цвет хаки будет .

Трудности этой модели заключаются в том, что в суровых реалиях (или в реальных суровиях) цвет зависит не столько от числовых данных, сколько от характеристики бумаги, краски в тонере, способе нанесения этой краски и т.п. Так что числовые значения будут однозначно определять цвет на мониторе, но они не покажут реальной картины на бумаге.

HSV (HSB) и HSL

Эти две цветовые модели я объединил, т.к. они схожи по своему принципу.

Трехмерная реализация HSL (слева) и HSV (справа) моделей представлена в виде цилиндра ниже, но на практике в ПО (программном обеспечении) не используется, ибо.. ибо трехмерная:)

HSV (или HSB) означает Hue, Saturation, Value (еще может именоваться Brightness ), где:

  • Hue - цветовой тон, т.е. оттенок цвета.
  • Saturation - насыщенность. Чем выше этот параметр, тем "чище" будет цвет, а чем ниже, тем ближе он будет к серому.
  • Value (Brightness ) - значение (яркость) цвета. Чем выше значение, тем ярче будет цвет (но не белее). А чем ниже, тем темнее (0% - черный)

HSL - Hue, Saturation, Lightness

  • Hue - Вы уже знаете
  • Saturation - аналогично
  • Lightness - это светлота цвета (не путать с яркостью) . Чем выше параметр, тем светлее цвет (100% - белый), а чем ниже, тем темнее (0% - черный).

Более распространенная модель - HSV , она часто используется вместе с моделью RGB , где HSV показана в визуальном виде, а числовые значения задаются в RGB . :

Здесь RGB- модель обведена красным и значения оттенков задаются числами от 0 до 255 , либо сразу можно указать цвет в шестнадцатеричном виде. А синим обведена HSV модель (визуальная часть в левом прямоугольнике, числовая - в правом ). Также часто можно указать непрозрачность (так называемый альфа-канал ).

Такая модель чаще всего используется в простой (или непрофессиональной) обработке изображений, т.к. при помощи неё удобно регулировать основные параметры фотографий, не прибегая к куче различных фильтров или отдельных настроек.
Например во всеми любимом (или проклинаемом) фотошопе присутствуют обе модели, только одна из них находится в редакторе выбора цвета, а другая - в окне настроек Hue/Saturation

Здесь красным показа RGB- модель, синим - HSB , зеленым - CMYK и голубым Lab (о ней чуть позже), что видно на картинке:)
А HSL- модель находится в таком вот окошке:

Недостаток HSB- модели в том, что она также зависит от аппаратной части. Она просто не соответствуют восприятию человеческого глаза, т.к. оный воспринимает цвета с разной яркостью (например, синий воспринимается нами более темным, чем красный), а в этой модели у всех цветов одинаковая яркость. У HSL аналогичные проблемы:)

Таких недостатков хотели избежать, поэтому одна небезызвестная компания CIE (Международная комиссия по освещению - Commission Internationale de l"Eclairage ) придумала новую модель, призванную не зависеть от аппаратной части. И назвали её Lab (нет, это не сокращение от Laboratory ).

Lab или L,a,b

Эта модель является одной из стандартных, хотя и малоизвестна рядовому пользователю.

Расшифровывается она следующим образом:

  • L - Luminance - освещенность (это совокупность яркости и интенсивности)
  • a - один из компонентов цвета, меняется от зеленого до красного
  • b - второй из компонентов цвета, меняется от синего до желтого

На рисунке показаны диапазоны компонент a и b для освещенности 25% (слева) и 75% (справа)

Яркость в этой модели отделяется от цветов, поэтому при помощи неё удобно регулировать контраст, резкость и другие светопоказатели, не трогая при этом цвета:)

Однако эта модель совсем неочевидная для использования и ею довольно трудно пользоваться на практике. Поэтому её используют в основном в обработке изображений и для конвертации оных из одной цветовой модели в другую без потерь (да, это единственная модель, которая делает это без потерь), обычным же смертным страждущим пользователям достаточно, как правило, HSL и HSV плюс фильтры.

Ну и в качестве примера работы модели HSV, HSL и Lab вот картинка из Википедии (кликабельно)

Здесь заглавные буквы не соответствуют никаким цветам, а символизируют тон (цвет), насыщенность и яркость (Hue Saturation Brightness). Предложена в 1978 году. Все цвета располагаются по кругу, и каждому соответствует свой градус, то есть всего насчитывается 360 вариантов – H определяет частоту света и принимает значение от 0 до 360 градусов (красный – 0, желтый – 60, зеленый – 120 градусов и так далее), т.е. любой цвет в ней определяется своим цветом (тоном), насыщенностью (то есть добавлением к нему белой краски) и яркостью.

Насыщенность (Saturation) – это параметр цвета, определяющий его чистоту. Отсутствие серых примесей (чистота кривой) соответствует данному параметру. Уменьшение насыщенности цвета означает его разбеливание. Цвет с уменьшением насыщенности становится пастельным, блеклым, размытым. На модели все одинаково насыщенные цвета располагаются на концентрических окружностях, т. е. можно говорить об одинаковой насыщенности, например, зеленого и пурпурного цветов, и чем ближе к центру круга, тем все более разбеленные цвета получаются. В самом центре любой цвет максимально разбеливается, проще говоря, становится белым цветом.

Работу с насыщенностью можно характеризовать как добавление в спектральный цвет определенного процента белой краски. Чем больше в цвете содержание белого, тем ниже значение насыщенности, тем более блеклым он становится.

Яркость (Brightness) – это параметр цвета, определяющий освещенность или затемненность цвета. Амплитуда (высота) световой волны соответствует этому параметру. Уменьшение яркости цвета означает его зачернение. Работу с яркостью можно характеризовать как добавление в спектральный цвет определенного процента черной краски. Чем больше в цвете содержание черного, тем ниже яркость, тем более темным становится цвет.

Модель HSB – это пользовательская цветовая модель, которая позволяет выбирать цвет традиционным способом. Она намного беднее рассмотренной ранее RGB, так как позволяет работать всего лишь с 3 миллионами цветов.

Эта модель аппаратно–зависимая и не соответствует восприятию человеческого глаза, так как глаз воспринимает спектральные цвета как цвета с разной яркостью (синий кажется более темным, чем красный), а в модели HSB им всем приписывается яркость 100%.

Глубина цвета

В цифровой фотографии количество цветов, которые могут быть сохранены в изображении, – это мера битовой глубины цвета.

Глубина цвета – количество бит, приходящихся на один пиксель (bpp). Определяет количество бит, или разрядов, с помощью которых составляются коды потенциальных значений тона или цвета.

Количество цветов, характерное для различной глубины цвета (битовой глубины).

4-х битное изображение 8-битное изображение 24-битное изображение

Изображение в цветовом режиме Grayscale (Полутоновый) имеет глубину 8 бит для единственного черного цвета, что обеспечивает 256 оттенков серого цвета при переходе от белого к черному. Однако типичная цветная цифровая фотография имеет три основных цвета: красный, зеленый и синий (RGB). И большинство цифровых фотографий (после их сохранения и переноса в компьютер) имеет глубину 8 бит для цвета (различных тонов и оттенков), связанного с каждым из трех каналов (именно по этому принципу и создается 24-битовое изображение: 3 основных цветовых канала, каждый по 8 бит). Чтобы вычислить количество цветов, доступное в полноцветном изображении в режиме RGB, нужно перемножить число цветов каждого основного канала. Для 24-битового изображения в режиме RGB это будет 256×256x256 – примерно 16,7 миллионов доступных цветов.

Человеческий глаз способен различать 12-14 миллионов цветов, поэтому глубина цвета 24 бит считается минимальной для создания фотореалистичных изображений (с полутонами (continuous tone), так что глаз не видит резких границ при переходе от одного цвета к другому). Конечно, способность вашего фотоаппарата зафиксировать миллионы цветов еще не означает, что вы их действительно получите. На типичной фотографии обычно присутствует около 5000 различных цветов, но существуют специальные палитры и функции, которые способны довести число цветов до миллиона или даже биллиона.

Однако битовая глубина определяет не только количество цветов, но и постепенность переходов между ними, однородность и гладкость оттенков при переходах одного цвета в другой, что напрямую зависит от числа цветов. Представьте себе фотопортрет. На лице должно присутствовать множество различных цветов и оттенков, чтобы сложная текстура человеческой кожи была передана верно. Иначе вы получите неестественное, ступенчатое изображение, испещренное графическими погрешностями.

В памяти цифровой камеры (особенно это касается дорогих профессиональных моделей) изображение может сохраняться при глубине цвета фактически 16 бит, которые можно перевести в 48 бит (биллионы различных цветов) для изображения в цветовой модели RGB. Вообще говоря, вы не можете воспользоваться напрямую всей этой цветовой информацией (распечатать такое изображение или отобразить его на дисплее), но Photoshop и другие профессиональные программы редактирования изображений способны открывать и обрабатывать такие большие файлы.

Понравилась статья? Поделитесь ей
Наверх